HP 9000 Series 200 Computers (b/”] EEE’:V&EFT::;

Pascal 3.0 Workstation System

Pascal 3.0 Workstation System
for the HP 9000 Series 200 Computers

Manual Part No. 98615-90021

© Copyright 1984, Hewlett-Packard Company.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of
Hewlett-Packard Company. The information contained in this document is subject to change without notice.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only.
Additional copies of the programs can be made for security and back-up purposes only. Resale of the programs
in their present form or with alterations, is expressly prohibited.

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the
Rights in Technical Data and Software clause in DAR 7-104.9(a).

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

. .

ii

Printing History

New editions of this manual will incorporate all material updated since the previous edition. Update
packages may be issued between editions and contain replacement and additional pages to be
merged into the manual by the user. Each updated page will be indicated by a revision date at the
bottom of the page. A vertical bar in the margin indicates the changes on each page. Note that pages
which are rearranged due to changes on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint do
not cause the date to change.) The manual part number changes when extensive technical changes
are incorporated.

May 1984.. First Edition

Warranty Statement

Hewlett-Packard products are warranted against defects in materials and workmanship. For Hewlett-Packard Fort Collins
Systems Division products sold inthe U.S.A. and Canada, this warranty applies for ninety (90) days from the date of delivery.”
Hewlett-Packard will, at its option, repair or replace equipment which proves to be defective during the warranty period. This
warranty includes labor, parts, and surface travel costs, if any. Equipment returned to Hewlett-Packard for repair must be
shipped freight prepaid. Repairs necessitated by misuse of the equipment, or by hardware, software, or interfacing not
provided by Hewlett-Packard are not covered by this warranty.

HP warrants that its software and firmware designated by HP for use with a CPU will execute its programming instructions
when properly installed on that CPU. HP does not warrant that the operation of the CPU, software, or firmware will be uninter-
rupted or error free.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-
Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

* For other countries, contact your local Sales and Support Office to determine warranty terms.

Table of Contents

Chapter 1: Overview

Introduction 1
Before Reading this Manual........... 1
Chapter Previews 2

The Main Command Level. 4

Main Command Level Quick Reference.......... e 5

Main Command Reference. 6
1= =T = 7
Initialize. 8
Memoryvolume 9
New sysvol. 11
Permanent. 12
RUN. . 13
SHreaM 14
User restart. 17
N ersION . . . 18
What. .. 20

Chapter 2: File System 23

Introduction 23

How Magnetic Discs Work 24

Pascal Volumes 26
Volumes. . .. 26
Logical Units 27
The System Volume and Default Volume 28
Files. ..o 29
File Naming Conventions. i 30
File Specificationsand File Names 30
Syntax of File Names 33
File Types Derived from File Names. 33
File names (LIF) 34
File Names (Workstation 1.0 Directory) 35
File Names (SRM System) 35
File Size Specification. 35
Several Directory Organizations Allowed 36
File Name Suffixesand File Types 36
Suppressingthe Suffix 37
Translating Files from One Data Type to Another. 38
Wildcardso 38
File Namesto Avoid 40
Allowable File Names 40
FileName Length 41

NoRoomonVolume. 41

The Shared Recource Management System, 42

Hierarchical directories 42
Notation B 43
SRM Unitsand Volumes 43
Moving Up and Down the Hierarchy 44
Default Volume vs Current Working Directory 46
Programming With Files 47
Pascal Primitive File Operations i 47
CreatingNew Files 47
File POSItion 48
The Buffer Variable. 49
File States. 49
Restrictions on APPEND: 50
Disposing of Files. 51
Opening Existing Files 51
Sequential File Operations. 52
Direct Access (Random Access) Files 54
Textfile Input and Qutput. 56
RESET, REWRITE, OPEN and APPEND 60
Debugging Programs Which Use Files 60
SRM Concurrent File Accesst 61
SRM Access Rights 63
Chapter 3: The Editor
Introduction 65
Enteringthe Editor. 66
Creatinga Text File. 67
The Editor Prompt 67
A Sample Editor Session. 68
Creating Text. 68
Storing your File and Returning to the Editor 69
Copying Text from Other Files 70
Confirming or Aborting Commands 71
Moving the Cursor 72
Deleting TexXt 73
Recovering Deleted Text 74
Moving and Duplicating Text. 74
Changing and Altering Text. 75
Formatting Text. o 80
Exiting the Editor and Savingthe File. 84
Making a Backup Copy oot 85
A Closer LooK 86
The CUrsOr. . .. 86
The AnChor . .. o 86
The Screenasa WindowintoaFile............. 86
Memoryand File Sizes 87

Structure of Text Files. o 88

Using Workfilesin the Editor 88

Stream Files and the ANYCHARKey. 89
I/O Errors (Entering and Exitingthe Editor) 89
Editor Commands 90
Editor Command Summary. 90
Command Syntax and Semanticsttt 91
AJUSE . . . 92
GOy . o oo 94
Delete. o 96
Equals (=). 98
Find. . 99
Insert. ..o 102
JUD 105
Margin 106
Page 107
QUIL. . .o 108
Replace oo 110
=3 113
Verify . 117
eXchange. 118
AP . . 120
Chapter 4: The Filer
Introduction 121
Enteringthe Filer. 122
The Filer Prompt. 122
Filer Operations. 123
ASample Filer Session. 123
Finding Out What Devices are Accessible 123
The Default and System Volumes. 124
Changing the Default Volume. 124
The System Volume. 125
Listing @ Directory. 126
Getting a More Detailed Listing. 127
AFew Words About Wildcards 129
Translating Text Files e 129
Sending File Listings to the Printerand Screen. 130
Copying Entire Volumes: Backup Copies 131
Creatinga Directory 133
Copying Files from VolumetoVolume 134
Renaming Filesand Volumes 137
RemovingFiles 138
Leavingthe Filer. 139
The System Workfile (A Convenient Scratchpad). 139
Filer Commands 140

Command Syntax and Semantics. 141

ACCESS. . oo S 144
Bad sector 146
Change. o 147
Duplicate 149
Extended directory 150
Filecopy . . . o 153
(T S P 156
Rrunch . .o 157
List directory 159
MaKe. . . 161
NeW 163
Prefix . .o 164
QUIL. . . o 166
Remove e 167
SaAVE . .o 169
Translate 170
Unit dir@CtOry. . . . o oot 172
VOIUMES . . o 174
What. .. 175
ZOTO . o e 176

Chapter 5: Pascal Compiler

Introduction 179
Steps In Program Development. 180
Prepare the Source Program. 180
Invoke the Compiler. 180
Handling Syntax Errors 181
Interpreting the Compilation Listing 182
Running the Compiled Program 183
Usinga Workfile 183
Debugging 184
Modules 185
Module Structure 185
Developing and TestingaModule 188
An llustration 190
Compiling a Module Separatelyc i 190
How the Compiler Finds Library Modules. 191
How the Loader Finds Library Modules. 193
ASubtle Point. 194
SINCLUDE Files o 194
Miscellaneous 194
What Can Go Wrong? 195
Can't Runthe Compiler. 195
Errors 900 thru 908 e 195
Errors When Importing Library Modules 248
Not Enough Memory 196
Insufficient Space for Global Variables. 196

Errors 403 thru 409 196

vii

Compiler OptONSt 197
ALLAS. 198
AN S L 199
CALLABS . . 200
CODE. . . 201
CODE _OFFSETS e 202
COPYRIGHT ... 203
DEBUG . .. 204
DEF 205
HEAP_DISPOSE 206
FLOAT _HDW . . 207
IE. 208
INCLUDE . . . 209
IOCHECK 210
LINENUM . 211
LINES. . 212
LIS T 213
OVFLCHECK 214
PAGE . . 215
PAGEWIDTH 216
PARTIAL_EVAL 217
RANGE ... 218
REF. 219
SAVE _CONST .. 220
SEARCH . .. 221
SEARCH_SIZE 222
STACKCHECK. 223
SWITCH_STRPOS. e 224
SYSPROG. 225
TABLES. . . 226
UCS D . .. 227
WARN . 228
System Programming Language Extensions 229
Absolute Addressingof Variables, 229
Error Trapping and Simulation 229
Determining the Size of Variablesand Types 230
Relaxed Typechecking of VAR Parameters............... 231
The ANYPTR Typeo 232
Determining the Absolute Address of a Variable. 232
Procedure Functions and the Standard Procedure CALL 233
The IORESULT Function 233
IOchecks and IOresults. o 234

Heap Management 236
MARK and RELEASE 236
DISPOSE . . . 236
Mixing DISPOSE and RELEASE 238

Converting UCSD Pascal programsouiiiiiiiii.. 239
Supported Features of UCSD Pascal i . 239

Some Useful HIntso 242

viii

How Pascal Programs Use the Stack. i 246
The Pascal Stack.o 246
Global Variables 246
Procedure Calls. 247
Function Calls 248
Parameter Passing Mechanisms i 248
Function Results 249

Implementation Restrictions. e 254
Inputtothe Compiler. 254
Nesting of INCLUDE Files and IMPORT Declarations 254
Module Names Used by the Operating System. 254
Maximum Size of Local and Global Data Areas 255
Implementation of CASE Statements. 255
Range of Real and Integer Numbers. 256
16-bit Subranges. 256
String Length. 256
Ordinal Range of Sets 256
Declared Record Length 256

Deviations from HP Standard Pascal e 257
Known Deviations. i 257
File System Differences 257

Unreported Errors 258

Chapter 6: The Assembler

Introduction 259
Operating the Assembler 260
Invoking the Assembler 260
Source File Specification 260
Listing File Information. 260
Object File Specification. 261
Interpreting the Listing 262
The Programming System 263
The IMPORT Text e 264
The DEF Table 264
The EXT Tableo 265
Declaring the Module Name e 266
Passing Parameters. 266
Declaring Global Variables. 267
Referencing Global Variables i 267
Referencing Other Module’s Globals 268
Local Variables 268
Module Initialization 271
Error Recovery 271
Exception Coding. i 273
Returningto Pascal. 273

Declaring External Procedures 274

Instruction Format. 275
InGeneral 275
SyUMbOls. . .. 275
OPCodes. 275
Size SUffiXes. o 275
EXPressions 276
Addressing Modes. 276

Psuedo-Op Language Reference. 280
COM. 280
DO 281
DECIMAL . 281
DEF 282
DS 282
END 283
EQU . 283
INCLUDE 283
L EN 284
LIS 284
LMODE . . 285
LPRINT . 285
MNAME . . 286
NOLIST . . 286
NOOBY .. 287
NOSYMS . 287
ORG . .. 288
PAGE . . 288
REFA 289
REFR . . 289
RMODE . . . 290
RORG ... 290
SMODE . . . 291
SP C 291
SPRINT . 291
SR 292
ST AR . . 292
T 292

The Examples 293

The Sample Pascal Programs. 293

The Sample Pascal Module e 294

The Disassembly of the Module. 295

The Assembly Language Module i i 297

Chapter 7: The Librarian

IntrodUction 301

ix

Library Overview. 302

Modules and Libraries i 302
What the Librarian Does 302
Example Modules 303
Compiling and Running the Example Program. 305
Enteringthe Librarian. 308
SettingUp Mass Storage i 309
Creating Libraries of Object Modules i 310
Adding Modules to the System Library 310
Making Your Own Library. 312
Linking Object Files Together 313
Getting Detailed Object File Information. 316
The Textand Table Commands.............. i, 317
The Unassemble Commands, 318
CreatingaNew BootFile. 322
Librarian Command Reference 323
Glossary of Object Code Terminology i 326
DEF Table (Definition Symbol Table) 326
DEFINE SOURCE 326
EXT Table (External Symbol Table). 327
EXPORT . . 328
Flags. 328
General Value or Address Record (GVR) 329
IMPLEMENT . . . 329
IMPORT . . 329
LIBRARIAN. . .. 329
L brary . .. 330
LIBRARY . . 330
Object File 330
Object Module. 330
Pascal Module. 330
REF Tables 331
Reference Pointer. 331
System Library 332
Text Record. 332

Chapter 8: The Debugger

Introduction 333
Isthe Debugger Loaded?. 333
A Sample Session 334
The Example Program 334
Please Participate 335
Loadingthe Debugger........... i 335
A Note about Key Notations 336
Is the Debugger Installed? 337

Invoking the Debugger. 337

The Debugger Command Screen. i 338

Single-Steppinga Program 339
Slow Program Execution 339
Returning to the Debugger Command Screen 339
Toggling Between Screens. 339
Screen Dumps. 340
ALookatthe Queue 340
Displaying Data. i 340
Controlling Execution with Breakpoints. 343
The Pause Function and Breakpoints. 346
Executing a Number of Statements 346
Tracing Program Flow through Procedures.................. 347
ALookattheStackFrame 348
Examining Variables. 348
Examining Consecutive Memory Locations. 350
Formats for Structured Variables., 351
Changing Memory Contents 352
Static and Dynamic Links 353
Exception Trapping.o 354
Generating Escapes 355
A Note about Assembly Language Programs 355
Debugger Keyboard 357
A Note about Key Notations 357
Is the Debugger Installed? 357
Calling the Debugger from the Main Command Level. 358
StepModes 358
Command Mode. 358
Debugger Command Summary. 361
Breakpoint Commands 361
CallCommand 361
Display Commands. 361
Dump Commands 361
Escape Code Commands i 361
Format Commands. i 361
Go Commandsottt 361
IF, ELSE, and END Commands 362
Open Memory Commandst 362
Procedure Commands. i 362
Queue Commandsttt 362
Register Operations. i 362
Softkey Commands 362
System Boot Command. 362
Trace Commandst 362
Walk Procedure Links Commands.c. ... 362
Debugger Command Reference 363
Debugger Expressions 363

Multiple Commandsonaline, 364

xii

Breakpoint Commands. 365
B 365
BA. 365
BC e 366
B 366
BS . 367

The Call Command. 368

Display Command. 369
D 369

Dump Commands. i 371
DA 371
DG 371

Escape Code Commands. 372
EC . 372
0 372
ETC 373
ETN 373

Format Commands......... 374
BB . 374
FH. 374
FL 374
FO. 374
FU. 374

Go Commands e 375
G 375
GE. 375
G 376
GTF . e 376

IF, ELSE, and END Commands 377

Open Memory Commands.ttt .. e 379
OL, OW, OB 379
SemMaNntiCs. 379

Procedure Commands 380
PN 380
P 380

Queue Commands 381
Q. 381
QE e 381
QS 381
Softkey Commands 382
“RO” thru “KO L 382

Register Operations. 383

System BOot. 383

Trace Commands 384
T 384
T 384

xiii

Walking the Procedure Links. 386
WD 386
WR 386
S 386

Chapter 9: Special Configurations 387

Introduction 387
Chapter Organization 387

The Booting Process. i 389
The Boot ROM 389
The Pascal System Discs 389
The System Boot File (SYSTEM_P)......... 390
The Initialization Library (INITLIB). 390
The Command Interpreter (STARTUP). 391
The Auto-Configuration Program (TABLE). 391
The AUTOSTART and AUTOKEYS Stream Files 392
Libraries. 392

The Auto-Configuration Process 393
TheUnitTable 393
How Unit Numbers Are Assigned i ... 394
Unblocked Devices. 394
Blocked Devices 394
Choosing the System Volume. 398
Failure of the TABLE Program, 398

Example Special Configurations 399
Hard Disc Partitioning 399
Multiple On-Line Systems 399
Adding Interfaces and Peripherals., 400
SettingUpan SRM System 403
Changing the System Printer. 403
Using Bubblesand EPROM. 404
Using Alternate DAMs 405

Modifying the Configuration. 409
Coalescing Hard Disc Volumes 409
Copying System Files and Changing Their Names. 417
AUTOSTART and AUTOKEYS Stream Files 420
Adding Modules to INITLIB. 421
Modifying the TABLE Program. 429
Commentary on the CTABLE Program. 430
Modifying Module OPTIONS i, 431
About Module CTR 441
About Module BRSTUFF. 442
About Module SCANSTUFF 442
Discussion of the Main Body of CTABLE 442
Editing CTABLE 446
Compiling and Running CTABLE 447
Verifying the New Configuration. 447

Making the New Configuration Permanent 448

Xiv

Example SRM Configuration 451
Prerequisites 451
Overview of SRM Installation 452
Installing the SRM Driver Modules i 453
Re-Configuring with TABLE 453
Creating the Required Directoriesand Files. 454
Copying the System Filesto SRM. 457
Adding Modules to INITLIB. 460
Replacing INITLIB 461
Multi-Disc SRM 463

Chapter 10: Non-Disc Mass Storage 465

Introduction 465
Summary of Configuration Modifications. 465
Mass Storage Comparisonttt 466

Using Bubble Cards 467
Power Constraints. o 467
Bubble Card Configuration 467
INITLIB Driver Modules. e 469
CTABLE Modifications. 471
Compiling CTABLE 472
LinkingCTABLE. O 472
Bubble Cards inthe File System. 473
Initialization 475
Interrupts and Overlapped /O 475
The BUBBLE Module Procedures 475

Using EPROM MemoOryo e 476
OVeIVIBW . . o 476
Configuration Changes Required 476
INITLIB Driver Modules. e 477
Programmer Card Installation 477
EPROM Card Installation. 479
The Programming Utility 482
Transferring Volumes to EPROMo 482
Transferring Files to EPROM 483
The EPROM Transfer Utility o e 485
Loadingthe EPROMS Module i 491
CTABLE Modifications. e 494
EPROM Cards inthe File System o i i 496

Using DCO00 Tapeso oot e e 497
Tape Drives Supported 497
Tape Access Methods. 497
Using the Tape Backup Utility. 498

Using the File System for Direct Tape Accesso 503

Technical Reference. 505

System History. 506
Pascal 1.0. 505

Pascal 2.0 and 2.1 507

Pascal 3.0. 510

File Interchange Between Pascaland BASIC., 515
Module Names Used by the Operating System 517
Physical Memory Map. 519
Full 16 Megabyte AddressingRange 519

A Hypothetical RAM Configuration 520

The Overall Memory Map o e 521
Memory Mapped /O 522
External VO 522
Internal l/O. 523

The Software Memory Map 525
Character Sets 527
U.S. ASCII Character Set. e 528
U.S. ASCII Character Set. e 529
U.S./European Display Characters 530
U.S./European Display Characters 531
U.S./European Display Characters i 532
U.S./European Display Characters 533
Katakana Display Characters............. . . i 534
Katakana Display Characters 535
9836 Highlight Characters o i 536
Command Summaries i 537
Main Command Level Summary 537
Editor Command Summary. 538
Filer Command Summary 539
Librarian Command Summary 540
Debugger Command Summary. 541
GloSSary 543
Error Messages. 549
Unreported Errors oo 549
Boot-Time Errors. 550
Run-Time Errors 551
[/O System Errors 552
VO Library Exrors 553
Graphics Errors 554

Loader/SEGMENTER Errorso 555

Xvi

Pascal Compiler Exrors 556
ANSIISO Pascal Exrors 556
Compiler Options 557
Implementation Restrictions. i 558
Non-ISO Language Features. i 558

Assembler Errors 560
Error Messagesottt 560

Debugger Error Messages/Conditions. 562

Subject Index. 563

Chapter

1

Overview

Introduction

This manual describes using the HP Series 200 Pascal 3.0 Workstation System. It focuses on how
to use the subsystems of the Pascal Workstation “‘environment” — the Editor, Filer, Compiler,
Assembler, Librarian, and Debugger — and how they interact to provide you with a powerful Pascal
program development tool.

Before Reading this Manual

Here are the manuals that you should have read before reading this manual.

Documentation Guide
The Pascal 3.0 Documentation Guide describes each manual in the documentation set. It will help
you to learn where the various parts of the system are described.

Installation Guide
You should have already set up your computer hardware according to the instructions in the
Installation Guide for your computer. If not, you should do that now.

User’s Guide

You should have also booted the Pascal system according to the instructions in the Pascal 3.0
User’s Guide. You should have also followed along with the examples to learn how to begin using
the system to compile a few simple Pascal programs.

Note

This manual describes many keyboard operations. Since you can have
one of three different keyboards, this manual generally describes the
keystrokes required on all three keyboards.

For instance, on the HP 46020A keyboards, there are both and
(Return) keys, while on the HP 98203A and 98203B keyboards, there is
only an key. When you are directed in this manual to press one
of these keys, the text will usually say: “Press the (Return) or (_Enter)
key.”

Another common example is the key on the 46020 and the
key on the 98203 keyboards. When you are directed to
press one of these keys, the text will say: “‘Press the (Select) ((_EXECUTE))
key.” (The second key noted in parentheses is the 98203 key.)

Descriptions of each keyboard and key-correspondence tables are pre-
sented in the Pascal 3.0 User’s Guide.

2 Overview

Pascal Textbook

The system manual (the one you are now reading) fully describes the tasks of entering, editing,
storing, compiling, loading and executing, and debugging Pascal programs. However, the manual
does not contain all of the ‘‘programming techniques’ information you will need to fully exploit the
power of the Pascal language. Thus, if you are not familiar with the Pascal language, you should
read An Introduction to Programming and Problem Solving with Pascal (included in the manual set
sent with your system).

Other Series 200 Manuals

This manual does not generally assume that you are familiar with any of the other languages and
systems available for Series 200 computers, although references are occasionally made to some of
these other languages where appropriate (such as BASIC).

Previous Workstation Pascal Manuals

If you are familiar with the documentation for earlier versions of the Pascal Workstation System,
you may be happy to know that this manual is a later edition of the Pascal User’s Manual. However,
this manual describes only Version 3.0 of the Pascal Workstation system. The main text does not
generally discuss earier versions of the system.

If you are upgrading from an earlier version, you may first want to read the System History section
in the Technical Reference appendix of this manual (the one you are now reading).

Chapter Previews
Here are brief previews of the contents of each of the chapters of this manual.

Chapter 1: Overview
The remainder of this chapter describes the commands available at the Main Command Level.

Chapter 2: The File System
This chapter introduces you to the Workstation File System. It describes how the logical units and
volumes are organized and accessed, and it also provides an outline of programming with files.

Chapter 3: The Editor

A program usually starts out as an idea. The Editor’s function is to provide a useful environment for
the translation of thoughts into actual programs or documents. This chapter fully explains the
features of the Pascal Workstation Editor.

Chapter 4: The Filer
The Filer is used to store, load, copy, translate and perform other file-related utility operations. This
chapter details performing these operations with the Filer.

Chapter 5: The Pascal Compiler

Once a program has been written with the Editor, this source code must be compiled into object
code before it can be executed. This chapter explains the operation of the Compiler and the options
that can be used to modify its operation. The chapter also describes the modular programming
capability, which is one of the most powerful features of this system.

Overview 3

Chapter 6: The Assembler

This chapter introduces you to the Assembler, which converts programs written in MC68000
Assembler language — a humanly understandable version of the microprocessor’s machine lan-
guage — into object code for the MC68000 family of processors used in the Series 200 Computers.

Chapter 7: The Librarian

This chapter covers using the Librarian. In the system are libraries of object-code modules: some
consist of device-drivers, while others consist of useful procedures for such applications as I/O and
graphics. You can also design your own modules. The Librarian’s function is to manage libraries of
Pascal and Assembler language object modules.

Chapter 8: The Debugger

We all wish that a program would run perfectly the first time. Unfortunately, there is little evidence
in real life to support that fantasy. The next best thing is to have some good tools to help you debug
your programs. This chapter explains the debugging features available with this system.

Chapter 9: Special Configurations

This chapter describes how to set up “‘non-standard” configurations. It first gives background
information regarding how the system boots and configures itself, and then it describes the steps
required to set up several configurations.

Chapter 10: Non-Disc Mass Storage

Several ‘“non-disc”’ types of mass storage devices are available on the Series 200 Pascal Worksta-
tion. EPROM (Erasable Programmable Read-Only Memory) cards, Magnetic Bubble Memory
cards, and DC600 tape cartridge drives. Configuring and using these devices is described in this
chapter.

Technical Reference Appendix
This appendix contains the following information:

e A history of the Pascal system, which includes descriptions of the differences between the 3.0
and previous versions of the Workstation system

e A list of module names used by the 3.0 system

e Software memory map

o ASCII character tables

Command Summaries
This appendix contains a summary of commands for each of the Pascal subsystems.

Glossary
Knowing what technical terms mean is always useful.

Error Messages
This appendix contains the complete listings of all error messages for the various Pascal subsystems.

Index
This section contains an index to the topics in this manual.

4 Qverview

The Main Command Level

The Main Command Level is the central point of reference for the operating system. It is “‘where
you are’ after booting the system and after each program completes. This section describes in
detail those Main Command Level operations which do not call subsystems (such as the Editor,
Filer, Compiler, etc.); the subsystems are each described in later chapters of this manual. However,
all the Main Command Level commands are listed in the subsequent Quick Reference.

Main Command Prompt

The Main Command Level consists of two prompt lines, only one of which is displayed at one time.
Press the key to toggle between them.

Command: Comepiler Filer Editor Initialize Librarian Run eXecute Version -~

Command: Assembler Debugdger Memuol Newsvysuol Permanent Stream User What 7

The uppercase letters in the prompt lines indicate which key to press to start the operation.
All of the operations are available regardless of which prompt is being displayed.

The prompts are abbreviated on the 50 column display of the Model 226.
Command: Cmeplr Edit File Init Libr Run Xcut Ver 7

Command: Asm Dbg Memu New Perm Stream User What 7

Overview

Main Command Quick Reference

Command Description

Compiler Calls the Compiler to translate Pascal source code
into object code.

Editor Calls the Editor for creating or editing a source program or textual document.

Filer Calls the Filer for management of the File System.

Initialize Initializes the File System (but not discs).

Librarian Calls the Librarian for managing, linking, or unassembling object-code files.

Run Runs the workfile (compiling it if needed) or the last program compiled since
power-up. If there is no workfile, Run operates like eXecute.

eXecute Asks for a code file and runs it.

Version Allows setting the time and date, and displays all the current system version
information. —

Assembler Calls the Assembler to translate an Assembler language source program into
object code.

Debugger Runs a program under control of the Debugger.

Memory volume Sets up a memory resident mass storage volume for fast access.

New sysvol Asks for a volume to be designated as the system volume.

Permanent Asks for a code file to be permanently loaded into memory for execution without
disc loading each time.

Stream Asks for a stream file whose characters are interpreted as keyboard input until

User restart
What

there are no more left.
Restarts the last program or subsystem that was run.

Displays the system file table and allows you to change the system files or system
and default volumes.

6 Overview

Main Command Reference

Each command in this section contains a description and a syntax diagram. The syntax diagrams
contain rounded and rectangular boxes. Elements in rounded boxes should be interpreted as
literals. An example is as follows:

This notation indicates that you must literally type a (_C) as part of the command.

(Rewn) or (ENTER

The (Retun) or (_Enter) indicates that you can press either key.

Elements in rectangular boxes are non-literal descriptions of command parameters. An example is
as follows:

file
name

This notation indicates that you must supply the actual file name as part of the command.

An example of a complete command is as follows:

file
(@3)——" name H Retum or)—b'

If, for example, this was the Compiler command syntax diagram, it would mean that you must type
(_¢) to run the Compiler, then type the name of the file to be compiled, and enter the file name

with either the or the key.

Overview 7

eXecute
The eXecute command runs a specified code file.
CEJ)_—[S pec iffiilcea tio nl—"C or)_.'
Item I Description/Default Range Restrictions
file specification literal Any legal file

specification (see the File
System chapter)

Semantics

The file you specify should be previously compiled or assembled and ready to run. It is not
necessary to include the . CODE suffix in the file name; it is automatically appended to the file name
if not included. If the actual file name does not contain a . CODE suffix, you will need to terminate
the file specification with a period to suppress this suffix.

If the specified code file imports other modules, those modules must be contained in the file being
executed, in the current System Library (which must be on-line), or they must be Permanently
loaded (by using the Permanent command at the Main Level). You can use the What command to
see which file is designated as the current System Library, and to change it if desired.

8 Overview

Initialize

The Initialize operation updates Unit Table entries for all units that are currently on-line. (It does not
initialize mass storage media; that function is performed by using the MEDIAINIT utility program.
See the Pascal 3.0 User’s Guide for further details.)

Semantics

The Unit Table contains a record for each of 50 possible logical units available to the File System.
The assignment of unit numbers to physical devices (auto-configuration) is performed by the
TABLE program at power-up. Each record contains the “device address vector”” of the physical
device which corresponds to that logical unit number. The computer then looks at the physical
location indicated by the device address vector to see if the device is on-line. If it is, that fact is
marked in the record for that unit, along with the volume name (if media is currently installed in the
device). Afterwards, the computer only looks at the Unit Table to see if a particular device is on-line;
it does not check the actual device. (See the Booting Process section of the Special Configurations
chapter for further details of how the TABLE program works.)

When a device is added to your system after the computer has been powered-up, you will usually
need to execute BOOT:TABLE or power-up the system again in order for the device to be
recognized. However, the Initialize command may in some cases be sufficient to get the system to
recognize the new device.

Initialize also performs a device clear for all on-line devices and causes the system to forget the last
loaded file (the User command can’t reload the last program). The Initialize operation also causes
all temporary files to be removed from each volume the next time a file is opened on the volume.

The volumes CONSOLE: (Unit #2) and PRINTER: (Unit #6) are special cases; these volumes are
always assumed to be on-line. Thus, the system may “‘hang” if either of them is off-line.

Overview

Memory volume

The Memory volume command creates a mass storage volume in memory.

@) 'Insgé;rl '((Retun) or (ENTER))—'IVQ;QE}—-((Retu) or (ENTER) }—*{dlp:icztem‘yi—b{ (Retum) or (BNTER)]

Item Description/Default Range Restrictions
unit number integer 7 thru 50
volume size integer indicating the number of 512-byte blocks =1
directory size integer indicating the maximum number of files =1
in the volume

Semantics
The Memvol command gives you the capability for very fast mass storage operations.

When the Memvol command is given, you are prompted for a unit number. This number corres-
ponds to an entry in the Unit Table. Don’t give a unit number which is already in use. The Volumes
command in the Filer subsystem shows which unit numbers are currently used. For most applica-
tions 50 is the recommended unit number to use for your first memory volume.

You are then prompted for the number of (512-byte) blocks needed for the memory volume. Try
to estimate conservatively the amount of memory you want reserved for the memory volume
because it cannot be returned for general purpose use without turning off the computer. On the
other hand, if you don’t specify enough space, you have to create another larger volume.

Memory volumes are useful for program development where a lot of mass storage I/O (editing and
compiling) is involved. Reserve enough space on the memory volume for both the source file, the
object code file, and 40 extra blocks for the Compiler’s temporary files. A good rule of thumb is:

size_of_volume = size_of_source_file (in 512-byte blocks) * 4 + 40

If you are transferring a source file from disc (as opposed to starting from scratch) you can
determine its size by getting a directory listing of the volume that contains it. However, note that
different directories return the file size in different units.

o LIF directories use 256-byte ‘‘blocks”

o WS1.0 directories use 512-byte “‘blocks”

® SRM directories use 1-byte ‘‘blocks”

Note that the default directory access method (DAM) for memory volumes is LIF; this DAM is the
primary DAM specified in the TABLE program. See the Special Configurations chapter for further
details ahout changing the primary DAM.

10 Overview

You are then prompted to give the number of directory entries you need for this memory volume.

Number of directory entries

?

Type the number you think you’ll need and press ((Enter).

You can refer to your memory volume by it’s unit number. For example:

#50:

Alternately, you can refer to it by its given volume name, which is initially RAM:. For example:

RAM:

If you plan to use more than one memory volume, use the Filer's Change command to give
each memory volume a unique name.

Here is a method for setting up an extremely fast program development environment.

1.

w

5.

Create a RAM: volume and specify it as the system volume using the Newsysvol com-
mand.

Specify RAM: as the default volume using the Main Command Level’s What command
or the Filer’s Prefix command.

Permanently load the Editor and Compiler using the Permanent command.

Go into the Editor and write your program.

When you’re ready to leave the Editor, use the Update option to create a workfile. The
system puts the workfile on the fast RAM system volume.

Press (R).

Your file will automatically be compiled. If it compiles with no errors, it will be run. If it contains
errors, you will have the option of returning to the Editor.

Note

Since memory volumes are volatile, don’t forget to save the files in the
memory volume on a disc before turning off the computer.

Overview 11

New sysvol

The New sysvol command specifies a new system volume and updates the operating system file
table accordingly.

) 'I unit
@ number OT

Item I Description/Default | Range Restrictions
unit number I integer I 1 thru 50
Semantics

The system file table is used in locating operating system files. It contains the volume and file names
of system files (EDITOR, FILER, etc.). When you press a key at the Main Command Level that
invokes one of these subsystems (such as (_E)), the system attempts to load the corresponding
file indicated in the system file table (here, the EDITOR file).

You can use this command to specify a new system volume. The first step in this operation prompts
you for a unit number. The device corresponding to the specified unit number is considered to be
the new system volume, and serves as a starting point in the search for the system files:
ASSEMBLER, COMPILER, EDITOR, FILER, LIBRARIAN, LIBRARY, and the work file. If any of
these system files are not found, the Unit Table is used in a sequential search for the rest of them. As
each file is found, the name of the volume on which it is found is prepended to the file name (for
instance, SYSVOL:LIBRARY), and the complete file specification is placed in the file table. If any
system file is not found in this search, the operating system assumes that it will find the file on the
flexible disc volume on which it was delivered (for instance, ACCESS:EDITOR).

Use the Main Command Level's What command to see the resultant system file table.

12 Overview

Permanent

The Permanent command loads a program permanently into memory.

N file -
CE/ specificat mnH"'@m")_"

Item I Description/Default Range Restrictions

file specification literal Any legal file
specification (see the File
System chapter)

Semantics

The Permanent command can be used to load a user program, a system program (Editor, Compiler
etc.), or a module that is needed by a program. This code file is then ready to execute immediately
when the command is given. A *‘P-loaded”” (Permanently loaded) program does not have to be
loaded from disc each time it is run.

After you give the Permanent command, you are prompted for the name of the file which contains
the module or program. You need not include the . CODE suffix; if you don’t include one, the suffix
will be appended to the file name. If the file to be P-loaded does not have a . CODE suffix, end the
file specification with a period to suppress the suffix from being appended to the file name automati-
cally.

Several programs may be P-loaded in memory. The operating system keeps track of which prog-
rams have been P-loaded. When you give a command to run a program, the operating system
checks to see if it has been P-loaded: if so, it is executed immediately. If not, it is loaded from disc
and then executed: after execution, the memory used by the program is reclaimed.

An object module which is imported by a program must be in the object file that contains the
program, in a file previously P-loaded, or contained in the current System Library (which must be
on-line).

A program or module’s global variables are zeroed only when it is loaded, not each time the
program is run. However, note that neither local variables nor dynamic variables are zeroed.

Note
Th volume name is not retained when a file is P-loaded. Attempting to
execute a file of the same name but on a different volume will still result
in the P-loaded file being executed.

For SRM users, do not use a directory path name to execute a P-loaded file.

Overview
Run

The Run operation causes the workfile or last compiled program to be executed.

(@) - -

L"ﬂsﬂec 1ffiilceatj Dnl_’c(@ or)_J
Item | Description/Default Range Restrictions
file specification literal Any legal file
specification (see the File
System chapter)

Semantics

When the Run command is given, the operating system checks to see if there is a workfile. If there is
a CODE workfile, it is executed; if not, the most recently compiled or assembled file is executed. If
there is a TEXT workfile but no CODE workfile, the TEXT workfile is first compiled (with the system
compiler) to a CODE file and then the CODE file is executed. If there is no workfile or previously
compiled program, the command operates like the eXecute command and you are prompted for a
file specification.

13

14 Overview

Stream

The Stream command “‘executes’ a file of ASCII characters as if they were being typed from the
keyboard.

file
C@j) SDECificat:onW)——»{

[tem | Description/Default Range Restrictions

file specification literal Any legal file
specification (see the File
Systemn chapter)

Semantics

A command stream or stream file is a file that is interpreted as input to the Main Command Level
and/or its subsystems in place of keyboard input. The Stream operation causes a file to be inter-
preted. Therefore, a stream file is useful for executing a sequence of commonly used commands
without requiring any operator intervention.

A stream file is created with the Editor and may be of type “. TEXT”, “.ASC” or Data. If you do not
specify a suffix, a *. TEXT” is automatically appended to the file name; if the name of the file to be
streamed does not have a suffix, add a trailing period to the file name to suppress the suffix.

In order to generate a valid sequence of keystrokes, you should first run through the desired
sequence while noting the keystrokes entered. Note particularly the occurences or absences of the
(Retun) or (Enter) key. Then enter the same keystrokes in your stream file. If, during an Editor or
Filer command sequence, you encounter an unpredictable question that has a (Y/N) or (R/O/N)
question associated with it, do not answer the question in the stream file. These kinds of questions
are answered automatically as the file is streamed. (Y/N) questions (Yes/No) are answered ‘Y.
(R/O/N) questions (Remove/Overwrite/Neither) are automatically answered “R”.

After all the characters in a stream file have been interpreted, control is returned to the keyboard.

Comments

Stream files may contain comments. A line beginning with an asterisk () will be interpreted as a
comment if it occurs at the Main Command Level. (Comments cannot be embedded among
commands for subsystems or user programs.) When the command interpreter encounters one or
more comment lines while streaming, they are displayed briefly on the screen, thus allowing the
process to be monitored.

Overview 15

Immediate Execute Keys
If it is necessary to use keys that also act as immediate-execute commands in the Editor, such as
(Select) ((_EXECUTE)) or ((Backspace), use the following key sequences to generate those keystrokes.

Immediate-Execute Key Generate with these Keys

(CTRL)-(Select) (€)

CTRL)-(Select) (_H)
(cTRL)-(select) (1)

CTAL)-(Setect)

Left arrow (LCTRL)-(select) (_H)

Right arrow (_CTRL)-(Select)

Up arrow CTAL)- (2

Down arrow (_CTRL)-(Select) (4)

If you have a 98203 keyboard, substitute (EXECUTE) or (EXEC) for (Select) in the preceding table.

Prompts for Keyboard Input

A stream file can be made to display a prompt on the CRT and then wait for an input string from the
keyboard. The input string is assigned to a variable in the stream file. When the variable is
encountered during streaming, the string is used in its place.

This input prompting must appear in the stream file before all of the commands or comments. Up to
36 prompts are allowed. They are denoted with an “‘="" as the first character on a line. :

To prompt for an input string, place an equal sign, followed by a single alphanumeric character
variable name (uppercase and lowercase letters used for variables are treated as equal), followed by
the prompt text. For example:

=f What is the name of the file to be P-loaded 7

When the file name is typed in response to the prompt, it is stored in the specified variable, in this
case the variable named f.

After the input prompting, begin entering the commands in the stream file. When you want the
input string to be given to the operating system, use the variable preceded by “@’’. For example,
the following characters are a command stream:

PEf

The command is the Permanent load command with a file name parameter indicating which file is
to be P-loaded. The file whose name was given in response to the above prompt is then P-loaded.

16 Overview

Disabling the Prompt Feature
If the stream file name contains a [# 1 specifier, the ability to prompt for keyboard input is disabled.

(Normally when a file is Streamed, the file is copied to the file named STREAM on the current
system volume; during this copy, prompts are displayed and @ variables assigned values input
from the keyboard by the computer operator. After all variables have been assigned, the file is read
as keystrokes; in other words, *STREAM is the file that is actually streamed. The [*1 suppresses
the normal processing of the prompts and input variables, as the keys are read directly from the
specified file.)

Stream Files on Read-Only Devices

It is the disabled-prompt mechanism (see preceding discussion) that allows the use of stream files
stored on read-only mass storage, such as EPROM, and the use of read-only devices as system
volumes. This mechanism is also used to process the AUTOKEYS stream file, if found during the
boot process when the AUTOSTART stream file is not present. For examples of AUTOSTART and
AUTOKEYS stream files, see the discussions in the Pascal 3.0 User’s Guide and in the Special
Configurations chapter of this manual.

Overview

User restart

The User restart command causes the last program that was run to be rerun.

Semantics
Included in the meaning of “program’ are user programs and operating system programs such as
Editor, Filer, Compiler, etc.

Global variables are zeroed at the time a program is loaded, not each time a program is rerun.
However, note that neither local variables nor dynamic variables are zeroed.

17

18 Overview

Version

The Version operation allows you to change the system time and date.

@2/ - (o) or @ED)

day T L
L‘b‘separatorl——.l mor\th]l L.
L¢—‘semar‘ator~ }——

L.I year }—)
;.| hours }

Y
y

Item Description/Default Range Restrictions
day integer 1 thru 31
month three alpha characters; letter case is ignored Jan, Feb, Mar, Apr, May,
Jun, Jul, Aug, Sep, Oct,
Nov, Dec
year integer 0 thru 99
hour integer 0 thru 23
minutes integer 0 thru 59
seconds integer 0 thru 59
separator non alphanumeric character ., -, /, space, etc.
Semantics

In addition to prompting for the system time and date, some operating system information is
displayed. The current operating system revision, available global and user memory space informa-
tion is displayed. Also, default and system volume information is displayed.

The Version Prompt

Overview 19

f
New svystem date 7
Svetem date is 1-Jun-84
Clock time is 14:14:350
Workstation Rev, 3.0 15-Apr-84

Available Global Space 37960 hbvtes
Total Available Memory 191042 bvtes

System volume: SYSV0DL:
Default volume: SYSV0L:

Copvright 1984 Hewlett-PacKard Companv.

All rights are reserved. Copvying or other
reproduction of this prodram excert for archival
purposes is Prohibited without the pPrior

written consent of Hewlett-PacKard Companv.

_

For more details on “Global Space’’, see the Compiler chapter.

Software Revision Note

This note describes the Pascal 3.01 revision. For future reference, you may want to insert it into the
System History section of the Technical Reference Appendix to the Pascal 3.0 Workstation System
manual.

Pascal 3.01

The purpose of this revision is to fix bugs in version 3.0 of the Pascal system. The 3.01 BOOT: and
ASM: discs contain software which corrects the bugs. (Note that other discs have not been revised.)

Note

These revisions do not add any features to the system; they only fix
bugs in existing features.

Documentation Changes
Since the 3.01 software does not add any features to the system, you may replace references to the
3.0 BOOT: and ASM: discs with references to the 3.01 discs.

Disposition of 3.0 BOOT: and ASM: Discs
If you have version 3.0 BOOT: and ASM: discs, replace them with the 3.01 discs. Do not use the
old discs any longer.

List of Bugs Fixed
Here are the areas in which bugs have been fixed by the 3.01 revisions:

® Flexible disc initialization on Model 226 and 236 Computers equipped with an HP-UX Mem-
ory Management processor board and the 3.0 Boot ROM.

® Softkeys and bus errors while using the Debugger.

® Disassembly of shift and rotate instructions with the REVASM module.
® Model 237 display driver module (CRTB).

® Non-advancing characters on some foreign language keyboards.

Fort Collins Systems Division e 3404 East Harmony Road e Fort Collins, Colorado 80525

98615-90080 H Ew LETT
October 1984 7} cackano

Printed in U.S.A

20 Overview

What

The What command displays the “‘system file table”” and allows you to specify new file specifica-
tions for the system files.

I

- -

ﬂ@—w
e (Retu) or (ENTER)

=
specification

volume
specification

@@@@

Item Description/Default Range Restrictions

file specification literal any legal file specification
(see the File System
chapter)

volume specification literal any legal volume
specification (see the File
System chapter)

Semantics

The system file table contains file specifications that are used by the operating system when locating
system files (Assembler, Compiler, Editor, Filer, Librarian, Library, and Default and System
volumes). The What command displays the system file table; a typical example is shown below.

Overview 21

The What Display

Assembler Compiler Editor Filer Librarian
liBrary Svstem volume Default volume Quit

ASSEMBLER SYSUOL:ASSEMBLER

COMPILER SYSVUOL:COMPILER
EDITOR SYSVOL:EDITOR
FILER SYSUDL:FILER
LIBRARIAN SYSUOL:LIBRARIAN
LIBRARY SYSUDL:LIBRARY

* Svystem volume: SYSVOL s
Default volume: SYSYOL :

Typing one of the uppercase letters at the top of the menu allows you to change the corresponding
file specification for that system file.

Note
When specifying a system file name that does not have a + CODE sulffix,
use a period at the end of the file name to prevent a « CODE suffix from
being appended to the file name.

With this command, it is possible to do such things as specify a file other than LIBRARY as the
System Library or your custom graphics editor as the System Editor. In the case of your custom
editor, you need only press (_E) to invoke it.

Specifying a logical unit number, such as #3 :, as the Default volume allows any disc media in a unit
with removable media to be the desired volume. To subsequently specify any volume in the default
unit, only the file name need be specified. To accomplish this, make sure that the drive door is
open, type (_D) for a Default volume change, and then type the following:

#3 ¢ (Enter)

22 Overview

Chapter

2

The File System

Introduction

This chapter introduces you to the Pascal File System. The File System organizes and accesses
information which is stored on mass storage devices. Even if you are an experienced program-
mer, you should read this material because it will help you understand the features of your
Pascal workstation.

Your computer has built into it a substantial amount of very high speed memory called Random
Access Memory, or RAM. This memory is called primary storage to distinguish it from external
mass storage called secondary storage. Normally, data processed by the computer must first
be placed in internal memory. (The term “‘data’ is used broadly to mean any information
processed by the computer, so programs are data too.) RAM has three important characteris-
tics:

® RAM is very fast: Some data items can be stored or retrieved from RAM in less than a millionth
of a second.
® RAM is volatile: Data in RAM is lost when the computer is powered off.

e [t is expensive compared to alternative, slower forms of data storage, such as discs or
magnetic tape.

Information not immediately needed by the computer is kept in secondary storage. Some
important characteristics of magnetic discs are:

® Data access is slow compared to RAM, often as much as ten thousand times slower.
® The data is relatively permanent, that is, it is available until erased.
® Magnetic storage is inexpensive compared to RAM.

® Magnetic media are often removable and replaceable, providing an almost unlimited
amount of long-term storage.

23

24 The File System

How Magnetic Discs Work

Discs come in two types, “‘flexible’”” and ‘‘hard’’. Flexible discs are also known as ““floppy discs”’
since they are light, thin and can be bent slightly. Hard discs are sometimes called *‘fixed’, since
the disc is not removable from most hard disc drives.

Both types of discs work in essentially the same way. The disc is a platter similar to a phono-
graph record made of plastic or metal. The disc is coated with a smooth layer of microscopic
magnetizable particles similar to that used in tape recorders. When the disc is in a disc drive, it
spins very fast. As it spins, a magnetic sensor similar to the recording/pickup head in a tape
recorder is held over the disc’s surface. The disc drive has a mechanism used to move this head
over various parts of the disc’s surface.

The recording groove in a phonograph record is a continuous spiral from the outer edge to the
middle. By contrast, magnetic discs are organized into a sequence of concentric but uncon-
nected circular tracks. The computer must tell the disc drive where to place the head over a
particular track in order to read or write data. The tracks themselves are logically broken up into
blocks of data called sectors. Discs are often referred to as ‘‘blocked devices’ because of this
structure.

The smallest amount of data that can be read from or written to a disc is a single sector. HP LIF
discs have sectors with length capable of holding 256 bytes (characters) of information. HP
WS1.0 discs have sectors with length capable of holding 512 bytes (characters) of information.
The computer may read or write several sectors in immediate succession. Since the disc is
spinning, once the recording head is positioned over the correct track the computer must still
wait until the desired sector rotates into position under the head. By processing one sector after
another as fast as the disc is rotating, the time delay caused by waiting for the sector to get into
the correct position can be effectively eliminated.

For various reasons, the computer may not be ready for the next sector as it spins into position.
By staggering the sectors on the disc it is possible to insure that the next logical sector rotates
into place just when the computer is ready for it. This staggering technique is called interleav-
ing, and it can greatly improve your system’s performance. Using the wrong interleave factor
can likewise drastically reduce your system’s performance.

For example, imagine a track that has 16 sectors of data numbered 0 through 15. If the disc has
an interleave factor of one, the sectors are simply in order:

012 3456 789 10 11 12 13 14 15

After reading sector zero, the computer must immediately be ready for sector one. If the
computer isn’t ready for sector one, it will be missed and sectors two through fifteen and zero
will pass under the head before sector one is again accessible. Thus a single sector would be
read on each disc rotation. This is not very efficient.

The File System 25

Now suppose the computer’s busy period after reading a record is just a little less than the time
that elapses while the next sector passes under the head. By placing sectors out of order on the
disc as follows:

0 819 2 10 3 11 4 12 5 13 6 14 7 15

the computer can access sector zero, miss sector eight, access sector one, miss nine, and so
forth. It is not necessary to wait for an entire disc rotation between successive sectors. The
numbering scheme shown is said to have interleave two, since looking at every other sector
accesses them in logical sequence.

The interleave factor for flexible discs is established by a process called initializing (some
manufacturers use the term ‘“‘formatting’’), which must be done before the disc is used. Initializ-
ing is done by a utility program called MEDIAINIT supplied with your Pascal system.
MEDIAINIT knows the appropriate interleave factor to use with various models of disc drives.

The default interleave for the disc you are initializing is shown in one of MEDIAINIT’s prompts.
This default is the best interleave factor for that particular device. For example, an HP 8290X
defaults to an interleave factor of 3. For hard discs, the interleave factor is established at the
factory; initialization of hard discs serves mainly to find bad tracks and force the use of spare
tracks if necessary, not to change the disc’s interleave.

26 The File System

Pascal Volumes

Let’s take an exploratory trip, using the computer itself to investigate the file system. You
should already know how to load the Pascal Language system, and be aware of its various
subsystems, such as the Editor and Filer.

To begin our journey, begin at the Main Command and load the Filer subsystem by pressing:

CF)

The Filer is located on the Pascal disc labelled ACCESS:. When the Filer's prompt line appears,
execute the Volumes command by pressing:

v

The various disc drives connected to your computer will be accessed and then you will see a
display similar to the following:

Volumes on-line:

1 CONSOLE: This is your workstation’s CRT display.
2 SYSTERM: This is your workstations keyboard.
3 & BOOT: BOOT: disc is in right-hand drive.
4 # WRKING: Initialized disc with volume name WRKING:
B PRINTER: Printer is connected to built-in HP-IB.
11 * SYSYOL: The * indicates the system volume.
12 # MYYOL: Volumes 11 through 14 are examples of a
13 # MASTER: possible HP 9134 disc drive configuration.
14 # VUli4:
50 # RAM: Ram volume made with Memory Volume command.

Prefix is - MYWOL: MYVOL: is current prefix volume.

Precisely what will be displayed depends on what peripherals are connected to your computer
and what discs are currently installed in the disc peripherals. Note how your display appears.
You may want to change some of the discs in your systems disc drives or turn off a peripheral
and see how that changes the display.

Volumés

The word ‘‘volume’ was chosen by analogy to a book. Volume denotes a logical entity in which
a substantial amount of information can be stored. For instance, a flexible disc is a volume.
Volumes have names by which we may refer to them. The display above shows what volumes
are currently accessible to the file system on my system.

Notice that each volume name is followed by a colon. This convention is used throughout the
Pascal system. The colon is a delimiter or punctuation mark which separates the volume name
from further information used to designate data within the volume.

A single large disc may contain more than one volume, as a shelf can hold more than one book.
Flexible discs contain a single volume. For flexible discs we may use the volume name as the
disc drive’s name. By that [mean, if we refer to the volume BOOT : by name, the computer will
find it in whichever drive it is located.

The File System 27

Note

Because the file system works with named volumes, it is very impor-
tant not to have more than one volume of a given name on-line at
one time. The file system may destroy data by using one volume
when you meant the other.

You can see that some of the volume names don’t correspond to any disc device at all. Actually
the file system has a name for each input/output device. SYSTERM: is the name of the

keyboard volume, CONSOLE: is the name of the CRT, and PRINTER: is the name of the
system hard copy device. We will have more to say about these non-disc volumes later.

Logical Units

The numbers in the column to the left of the Volume names displayed above are called “‘logical
unit numbers” or simply ‘‘units”’. The volume name denotes a particular disc, while the unit
number denotes a particular location for a volume. In the case of flexible discs, the unit number
corresponds to a physical disc drive. In the case of a large fixed disc which is divided into several
logical volumes, each logical unit represents a portion of the disc surface which is treated as if it
were a separate physical disc drive.

To refer to a unit instead of a volume, use a # followed by the unit number. For instance #3:
and BOOT : both refer to the same volume as long as BOOT: is installed in the right-hand disc
drive of a Model 226 or Model 236 computer.

Drive Numbers vs. Unit Numbers

Since a single machine can contain two or more drives, you need to be able to distinguish
between them. If you read the machine’s manual, you will find that the drives are differentiated
by drive number. For instance, the right-hand floppy drive in a 9836 is drive number 0, while
the left-hand drive is drive number 1. The File System distinguishes between them by assigning
each a unique logical unit number. In the case of the 9836, these drives are normally assigned
unit numbers 3 and 4, respectively. With external dual floppy drives, drive O is usually the
left-hand drive, while drive 1 is the right-hand drive. And with hard disc drives, there can be
several drive numbers. Don’t be alarmed, however, because the system takes care of the
correspondence between drive numbers and unit numbers for you. In addition, this manual
refers almost solely to logical unit numbers, not drive numbers. Drive numbers were mentioned
so that you would realize that they are not the same as unit numbers.

Blocked and Unblocked Units

Some of the units are displayed with # or * between the unit number and the volume name.
These are blocked units. Blocked units are memory devices that are divided into sectors
(blocks) and have directories describing their contents.

We aren'’t yet ready to talk about the data stored in a volume, but you probably won’t be
surprised to learn that it is organized into groups called “files’”’, which are like chapters in a
book. The directory of a blocked volume is essentially a table of contents.

The other units are unblocked or “‘byte stream’ devices (such as the printer, keyboard, and
CRT). Unblocked devices process information one character at a time and do not have direc-
tories.

28 The File System

The System Volume and Default Volume

Although your workstation can deal with many volumes (up to 50 on-line at once), there are
two volumes which are referred to so frequently that special abbreviations have been provided
to name them. They are the system volume and the default volume.

The System Volume

The system volume is used by the Operating System to store its own private files and records.
Since the Operating System is always overseeing your computer’s operation, the system
volume needs to be accessible practically all of the time. The abbreviated name for the system
volume is * (asterisk), which appears next to the system volume in the Volumes command’s
display. The asterisk need not be followed by a colon, since it is distinctive. Thus for the Volume
display shown previously, these notations all denote the system volume:

*
L
SYSVOL :
#11:

Here are some of the ways the operating system uses the system volume:

e When the Operating System is loaded and begins to function, it looks on the system
volume for subsystem programs such as the Editor, Filer and Compiler. If these subsystem
programs are on other volumes, the Operating System will still find them.

e When the Operating System first begins to function, it looks on the system volume to find
the system date. The system date is put on all files as they are created to help in maintain-
ing file organization. If you change the system date, the new date gets written on the
system volume.

® During processing of a stream file, data may be temporarily stored on the system volume.
A stream file is a pre-recorded sequence of keystrokes which are treated as if they came
directly from the keyboard.

e If you create an anonymous file (see the Programming With Files section), it will be stored
on the system volume. An anonymous file is a file created by a program, used by the
program, and then destroyed when the program ends. While the program is in existence,
the anonymous file is for all purposes a real file.

e If you use a work file during development of a program, it will be stored on the system
volume.

e If you use an AUTOSTART or AUTOKEYS file, it must be stored on the system volume.

The Default (Prefix) Volume

The other special volume is the default volume. This volume is sometime called the prefix
volume. In many applications it is most convenient to have the frequently needed files together
in a single volume. If these files are being accessed frequently, it is tedious to constantly type the
volume name or unit number. You can instead tell the system that when no volume name is
specified, the one to use is the default volume. You specify the default volume by using the
Filer’s Prefix command.

The File System 29

The preceding Volumes display indicates ‘‘Prefix is - MYVOL.”. This means that MYVOL. is the
default volume. The default volume can be specified in two ways. If a colon separator appears
with no volume name before it, the default volume is assumed. If a file name is given with no
volume name before it, the default volume is assumed.

Use the Filer’s Prefix command to set the default volume name:

Ce)

Prefix to what directorv?
5YSVOL : (Retun) or (ENTER)
Prefix is SYSYOL:

The default volume and the system volume can be the same volume. In fact, except for single
drive configurations, the default condition you received from the factory has SYSVOL.: as both
the default and system volume.

If a unit specified by unit number (e.g. #3:) in a Prefix command does not contain a disc when
the Prefix command is executed, that unit becomes the default volume. That means that the
current disc in that drive, no matter which disc is the current disc, is the default disc as long as it
is in the drive.

You can also set the default volume name using the What command of the main Commmand
level. The What command is more powerful than the Prefix command because What allows
you to specify a new system volume, as well as the name and location of each of the system files
(Filer, Editor, Library etc). For further information on the What command, see Chapter 1 of this
manual.

Files

Information within a blocked volume is further organized into files. A file is a collection of
related information, having a name by which it is identified during the file operations. Since a
volume usually contains many files, within the volume there is also a directory, or ‘‘table of
contents,” telling the name of each file, how big it is, what sectors it occupies on the disc, and
(roughly) what sort of data it contains.

Files are created by computer programs — either system programs (such as the Editor, Filer and
Compiler,) or user application programs.

For example, when you save a Pascal program written with the Editor, the program is saved
with the specified file name in either the current default volume or the specified volume. When
that same program is compiled, the object code is stored in another file. When the object code
program is executed, it may create more files.

You can use the Filer to list the files in a volume. For instance, to see what is in the default
volume of our example system, type:

to invoke the Filer’s List directory command. The Filer responds with:

List what directory?

30 The File System

When a volume is not specified, the default volume is assumed. To specify the default direc-
tory, type in:

(" :) (Return) or (ENTER)

Assuming the configuration shown on previous page, you could have done the same job by
typing:
SYS5UOL : (Retun) or (ENTER)

The listing of the default volume’s directory is shown below.

SYSVOL : Directory tvepe= LIF lewvel 1 A
created 9-Aug-82 21.,13.,37 block size=256

chanded 9-Aug-82 21,13,37 Storade order

vrefile namessss # blks # hvtes last chng
TAPEBKUP.CODE 54 13824 28-0ct-82
FILEINTRO.TEXT B4 16384 28-0ct-B2
FILEINTRO.ASC 73 18688 28-0ct-82

DATAFILE 10 2560 2B-0ct-82

FILES shown=4 allocated=4 unallocated=76

BLOCKS (256 bvtes) used=201 unused=4499 lardest srace=4493

File Naming Conventions

The definition of HP Pascal tries to minimize the work of moving Pascal programs from one
operating system to another by requiring the use of string values to specify the names of files
and certain other information such as passwords and access rights.

In Pascal 2.0 and later versions, the allowable syntax of a file name depends on the type of
directory in which the file resides. The underlying file support is structured to allow programs to
work properly regardless of the directory organization(s) being used, but the syntax of file
names is defined by the type of directory on the volume.

File Specifications and File Names

There is a difference between a file specification and a file name. A file name is a character
string which is the external identifier by which a file is designated in a disc directory. A file
specification is a character string which consists of the file name and several other optional
items: volume_id, directory_path, passwords, and size_specifier. Not all of these items are
allowed by every Directory Access Method or under all circumstances; for instance, directory
paths and passwords are only used with the Shared Resource Management System’s hier-
archical directory organization.

The File System 31

Syntax of a File Specification
The syntax of a legal file specification is given by the following diagram:

file_specification :: = [volume_id] [directory_path] file_name [*‘[*‘size_spec’’]"’]

I

volume_id

In this notation, items between square brackets [and] are optional; quoted items appear
literally. The definition just given means that a file_spec (file specification) may appear in one of
two forms. The first form consists of an optional volume_id followed by a colon, then an
optional directory_path, then a file_name which is not optional, then an optional size_spec. The
second form consists just of a volume_id.

Examples of the first form are as follows:

File.x

A49ZBL10]
#4:LIBRARY .
BODT:SYSTEM_P
#43:8YSTEMZ1/FILER
*EDITOR.

Examples of the second form are as follows:

BOOT:
#3:
*

#45:5YSTEM21/TOOLS
#45

Syntax of a Volume Identifier

The volume_id selects one of up to 50 logical units known to the file system. If no volume_id is
present, the volume used is the “‘default volume’ selected by the Filer's Prefix command.
Otherwise, the volume is specified in one of two ways:

[T L]

volume_id :: = “#” integer [password] **:

ITRE]

:»= name [password]|

In the first case, the integer is a two-digit number from one to fifty; for example, #23: is a
volume_id. In the second case, the name is a sequence of characters. The length of the name
and allowable characters depend on the particular directory organization used by the logical
unit. For mass storage devices, the volume name is actually stored on the disc itself so it can be
identified whenever it is inserted into a drive. For devices which have no directory, such as
printers, the volume name is an arbitrary one supplied by the TABLE configuration program at
boot-up time.

32 The File System

Example volume_ids of the second form are MYSYS: and PRINTER: Volume_ids may be 6
characters long in LIF directories, 7 characters long in Workstation 1.0 (UCSD-compatible)
directories, and 16 characters long in SRM directories. LIF and SRM allow lowercase letters,
while WS1.0 and unblocked devices ignore letter case. WS1.0 converts all characters to upper-
case automatically.

In the case of a logical unit connected to a Shared Resource Management System, the
volume_id takes a special meaning. The notation #5: refers to the current working directory of
unit number five; the notation #5:/ refers to the root directory of the SRM with which unit
number five is associated. The current working directory for any SRM volume is selected by the
Filer’s Prefix or Unit commands, or the What command of the Main Command level.

On the other hand, if the logical unit does not have a hierarchical directory, then the two
volume_id notations (e.g., #11: and SYSVOL.:) have the same meaning. This is the case for all
local mass storage devices.

Syntax of a Directory Path (SRM)
Directory paths are only allowed when specifying files on SRM logical units. The syntax for a
directory_path is:

directory_path :: = [““/"’] { directory_name [password] /" }
password :: = < word “‘>"

file_name

e

directory_name ::

ke

The use of curly braces “{”’ and *‘}”’ indicates that the information between them may occur
zero or more times. As you can see, there are two special directory names allowed with the
SRM. The name ‘'.”’ (a single period) refers to the current directory somewhere along a path to
a file of an SRM logical unit. The name *..”" refers to the parent of the current directory. Other
file names occuring in a directory path are directories along the path to the one which contains

the file being specified.

Passwords are sequences of up to 16 characters, which govern the access rights to a file or
directory. They are given to a file either at creation time or by use of the Filer's Access
command.

Note that a directory path doesn’t appear by itself; it appears as part of a file specification, with
the file name after the directory path. Examples of directory paths are:

/. <PASS1>/ Denotes root, using password ‘“PASS1”.

/USERS/ROGER/ Denotes directory ROGER in USERS, which is in root directory.
HERE/THERE/ Denotes directory THERE, found in HERE.
../THERE<PASS2>/ Directory THERE, found in the parent of the current working

directory.

The File System

A directory path together with a volume_id might appear as follows:
#5:/WORKSTATIONS/SYSTEM13/

Occasionally there is need for a volume password, which is a case not covered by the above
syntax. You may use either of the following forms:

#5<volpassword>:/dirnamel/dirnameZ2/filename
#5: <volpassword>/dirnamel/dirname2/filename

That is, the volume password may either immediately precede or follow the colon separator.

Syntax of File Names
To the Pascal Workstation System, a file name is just a sequence of characters. The Directory
Access Methods allow all printable characters. However, the following characters have signifi-
cance either in Filer commands or in the overall specification of files under various Directory
Access Methods (such as directory paths in hierarchical directories), and therefore should be
avoided in file names:

e sharp ‘#

® asterisk “*’

e comma °,’

® colon *’

® cquals ‘=’

® question mark ‘?’

o left bracket ‘[’

® right bracket ‘|’

e dollar sign ‘$’

® less than ‘<’

e greater than ‘>’

Control characters (ASCII ordinal value less than 32) and blanks are removed by the File
System before the name is ever presented to any Directory Access Method.

File Types Derived from File Names

The type of a file is determined when it is created, and is derived from a suffix (the last
characters of the file name). Once the file type is determined, a type code is recorded in the
directory, and changing the file name won’t change its type.

Suffix File type

.ASC LIF ASCII text file

.TEXT WS 1.0/ UCSD compatible text file
.CODE Pascal 2.0 object code

.BAD File covering bad area of disc
.SYSTM Boot image file

No Suffix “Data” file

33

34 The File System

File Names (LIF)

The LIF Directory Access Method (DAM) generally allows any ASCII character to be used in a
file name. This is contrary to the HP LIF Standard, which states that file names must be
composed only of upper-case letters, digits, and the underscore ‘_’ character. Note that upper
and lower case letters are distinct. File names stored in LIF directories are always exactly 10
characters.

The LIF DAM recognizes only upper case suffixes.

The 10-character file name length would be a very severe restriction when four or five charac-
ters are required for a suffix. To ease this problem, the LIF DAM performs a transformation on
the file name which compresses the suffix if one is present. The transformation occurs automati-
cally when a LIF directory entry is made, and it is reversed automatically before the file name is
ever presented to any program or to the user.

This process is usually completely transparent to the Pascal user, although its effects may be
seen when a LIF directory is examined from the BASIC language system. It sounds complicated
and dangerous, but in practice it is very smooth. Most people would never notice it if they
weren’t told.

Here is how the LIF DAM changes a name before putting it into the directory.
1. Look for a standard suffix (for example, ““.ASC").

a. If a suffix is found, the suffix characters are removed from the name, leaving a trailing
period. If this name is longer than 10 characters, including the period, then an error
is reported.

b. If no suffix is found, and the file name contains less than 10 characters, the file is
assumed to be a Data file and the name is put into the directory unchanged. If no
suffix is found, but the file name is exactly 10 characters in length and the last
characteris an A, B, C, S, or T, then an error is reported.

2. lf the file is not a Data file and no error has been reported, the dot is replaced by the first
letter of the suffix; for instance, the .ASC sulffix is replaced by A. If the name is now less
than 10 characters long, it is extended to a length of 10 characters by appending under-
score characters (_) to the name.

Using this algorithm, we would have the following examples:

File name Translated name

‘AASC AA_ ’

‘charlie’ ‘charlie”’
‘123456789.TEXT’ ‘1234567891
‘GollyGeeeT’ rejected because it would be

confused with transformation of
‘GollyGeee. TEXT’

The File System 35

The reverse transformation is fairly obvious:

1. If the 10th character is a blank, do nothing; otherwise,
2. Remouve all trailing underscores.

3. Compare the last non-underscore to the first letter of each valid suffix. If a match is
found, remove that letter from the file name and append a dot *.” followed by the full
suffix.

4. If no suffix match is found, use the original file name.

File Names (Workstation 1.0 Directory)

The Workstation 1.0 (UCSD compatible) DAM allows file names of up to 15 characters includ-
ing the suffix. Any lower-case letters are transformed to upper-case, so that ‘a.text’ and
‘A.TEXT denote the same file.

File Names (SRM System)

The SRM itself allows almost any file name. The Pascal system removes blanks and control
characters from file names.

However, the Pascal SRM Directory Access Method takes the “‘<’’ character to denote the
beginning of a password. All characters up to the next *‘>"" character are part of the password,
so that << <<<<<<>is a (poorly chosen) password. Passwords may be up to 16 characters
long.

File Size Specification
The last, optional part of a file specification is the file size specifier. If present, its syntax is

size_spec :: = “‘["" integer ‘]”’

= [

This specification only takes effect if a new file is being created with REWRITE, OPEN,APPEND
or APPEND with OPEN . If the file already exists, the file system tries to make it at least the size
specified. The size is ignored for RESET.

In the first form, the integer gives the number of 512-byte blocks to be allocated to the file. For
instance [100] would cause allocation of 51 200 bytes.

The second form [*] specifies that the file is to be allocated either (half of the largest free space)
or (the second largest free space), whichever is larger.

If no size specifier is present when space for a new file is being allocated, the largest free area is
assigned to the file.

For files stored in the SRM, the first extent allocated to the file will be contiguous and of the size
specified if possible.

36 The File System

Several Directory Organizations Allowed

HP LIF (Logical Interchange Format) is the default directory format used by your Pascal
Language System. There are many (mutually incompatible) ways to organize files and director-
ies on a disc. LIF is an HP standard disc organization used to transport files between computers
made by Hewlett Packard Company. The HP Series 200 BASIC Language System also sup-
ports the LIF directory structure on your Series 200 computers.

In addition, your Pascal workstation understands two other disc directory organizations. The
WS1.0 format was the primary disc directory format used by the Pascal 1.0 Language System.
You Pascal workstation also supports the hierarchical directory structure used by the Shared
Resource Management System. The SRM and hierarchical directories are discussed as a sepa-
rate topic later in this section. The WS1.0 format is compatible with the widely used UCSD*
Pascal system.

File Name Suffixes and File Types

Our example default volume contains four files: TAPEBKUP.CODE, FILEINTRO.TEXT,
FILEINTRO.ASC and DATAFILE. The first three file names have a suffix. This suffix is part of
the file name, so FILEINTRO.ASC and FILEINTRO.TEXT are different files. The suffix was
appended to show the file type when the file was created. The file type, once determined, is
stored in the directory along with the file name. That means the file type would not be changed
if you later changed the file name and removed or changed the suffix. You can see the file type
of each file by listing the directory using the Filer's Extended Directory List command.

The suffixes recognized by the Pascal 2.0 (and later) File System are shown below:

ASC Information stored in an .ASC file is stored as individual strings. Each string has a two-byte
string length header. Text files are produced by the Editor.
.TEXT .TEXT files follow the WS1.0 or UCSD Pascal format. They Have a 1024-byte header

containing environment infomation. This header is followed by compacted text in 1024-
byte pages. Each line of information begins with ASCII characer 16. This is followed by an
integer calculated to be 32 plus the number of initial blank characters in the line. Each line
is then terminated by ASCII character 13. If a line will not fit in a 1024-character page, the
whole line is moved to the beginning of the next page and the remainder of the previous
page is filled with blanks.

.CODE A .CODE file is the object code produced by the Compiler, Assembler or Librarian. This
file is also called a library.

.SYSTM A .SYSTM file is a special file recognized by the Boot ROM as a file containing an operating
system.

.BAD A .BAD file is used to cover failed disc sectors. Use the Filer's Make command to make a
file of type .BAD over the defective sector of the disc media. This type of file should only be
used as an emergency measure. The defective disc should be replaced.

A file whose name at the time of creation does not end in one of these suffixes is said to be of
type DATA.

* UCSD Pascal’ is a trademark of the Regents of the University of California.

The File System 37

The Pascal system, in many circumstances, automatically appends the appropriate suffix to a
file’s name. For instance, when loading a file into the Editor, just type the file name without the
suffix. The Editor knows that in normal circumstances you will want to edit a . TEXT file and will
automatically add the suffix. Of course, if you wish to type the suffix you may. If you want the
Editor to load another type of file, then the correct suffix must be specified. The period stops the
Editor from adding the suffix .TEXT. If you try to specify a file type that the subsystem can’t
work with, such as a .CODE file in the Editor, you will get an error message reading
Undefined orperation

for this file/unit.

Automatic suffixing is very convenient. For instance, you might write a program with the Editor
and call the output file WORK. The Editor automatically appends .TEXT. When you use the
Compiler to compile WORK, the Compiler automatically appends .TEXT to the source file
name, and .CODE to the output file name. Although there are two files, you only need to
remember one name. To execute WORK.CODE, you need only press (_R) or (RUN); alter-
nately, you could type the following (from the main command level):

(Setect) ((_EXECUTE))
WORK (Return) or (ENTER)

Suppressing the Suffix

On the other hand, you may wish a file name which has no suffix. You can suppress the
automatic appending of a suffix by typing a period as the last character in the file name. For
instance, to create a data file with the name AFILE, just tell the Editor to save your file as
AFILE.. The period aborts the suffix and makes the type DATA. Likewise the Librarian and
Compiler will automatically append .CODE to file names unless you tell them not to with the
period.

System programs like the Editor don’t have the .CODE suffix. This protects them against
accidental destruction by a wildcard purge operation on all .CODE files. If you wish to per-
manently load a system program into memory with the Permanent command, you must
append a dot to the file name. To load the Editor, type:

Cp)
EDITOR(.). (Return) or (ENTER)

Without the period, the system would try to load EDITOR.CODE, which is not what you want.

38 The File System

Translating Files from One Type to Another

Sometimes you may want to translate the contents of a file from one file type to another. For
instance, you may have a file of type .TEXT, created by the Editor, and wish to read it with
BASIC 2.0. BASIC 2.0 understands the LIF ASCII (.ASC) format, but not the .TEXT format.
You can use the Filer's Translate command in this situation. A typical dialogue would be:

1)

Translate what file?
EXAMPLE . TEXT (Return) or (ENTER)
Translate to what?
EXAMPLE . ASC (Return) or (ENTER)

For Translate to make sense, the source file must contain data that is textual in nature; attemp-
ting to translate a .CODE file, for example, would not make sense.

Another situation where translation is required is to move a file from a disc volume to the
printer. The file may be a .TEXT, .ASC or DATA file . The way such files are stored on the disc
is not compatible with unblocked devices (such as the printer), so you must use the Translate
command. Just type in:

Translate what file?

WORK . TEXT (Return) or (ENTER)

Translate to what?
PRINTER : (Return) or (ENTER)

This example illustrates several points. First, in the Filer environment you must always specify
the complete file name including the suffix. Second, to send a file to a device like the printer
which has no directory, there is no point in specifying a file name. Just use the volume name.
Had you specified a file name after PRINTER: the Filer would have given you an error message.

Wildcards

In the Filer environment you can specify a particular file or set of files by giving a pattern which
identifies the files you want. These patterns include special characters called wildcards.

For example, we can use the wildcard = (equal sign) to list a subset of the file using the Filers
List Directory command. From the Filer subsystem, press:

The computer responds with:

List what directorvy?

Respond with:
FILE= (Return) or (ENTER)

The File System 39

FILE= uses the equal sign wild card to specify all files whose names begin with FILE and end
with any sequence of characters. Using our example system, this command sequence would
produce:

(gYSUOL: Directory tvee= LIF leuel 1
created 89-Aug-82 21.13.37 block size=236
chanded 9-Aud-B2 21.,13.37 Storade order

veefile namesss # blKks # bvtes last chng
FILEINTRO.TEXT 64 16384 28-0ct-82
FILEINTRO.ASC 73 18688 28-0ct-B2

FILES shown=2 allocated=4 unallocated=76

BLOCKS (256 bvtes) used=201 unused=4499 largest space=4493

Notice what happened here. The Filer recognized that the response to the prompt, ‘‘List what
directory?”’, specified not just a volume name but a set of files within that volume.

More than one wild card may appear in a single file specification given to the Filer, allowing you
to easily describe some rather complex operations. For instance, you can copy all the files on
unit #13 whose names contain the characters INT to the system volume by means of this
command sequence:

CF)

Filecory what file?
#13:=INT= (Retun) or (ENTER)
Filecory to what?

*% (Return) or (ENTER)

This example uses the destination wildcard ‘$”’, which means ‘‘use the same name as the
source file had”’. The command locates each file on unit #13 whose name matches the pattern,
and writes a new copy with the same file name on the system volume. Remember that * is
shorthand for the name of the system volume.

You can use ‘“?”’ as a wild card instead of *‘="’". Question mark works like equals, except that
for each file whose name matches the specification, the Filer will ask if you want to perform the
operation. For example, to have the Filer change each file name on the default volume begin-
ning with FILE into a file name beginning with WORK, type in:

Cc))

Chande what file?
FILE? (Return) or (ENTER)
Chande to what?

WORK = (Return) or (ENTER)

This would for example turn FILE_ONE.TEXT into WORK_ONE.TEXT. Each time the speci-
fication is met, the Filer will present what it has found and ask if the process should be
completed for the entry. Answer with Y for yes or N for no each time you’re asked.

40 The File System

File Names to Avoid

The file system won’t prevent you from creating file names containing wildcard characters, but
you'll be sorry if you do. The Filer will think such file names are wildcard specifications instead
of simple file names. For instance if you created a file called =.TEXT, then used the Filer
sequence:

(R

Remove what file?
=, TEXT (Retun) or (ENTER)

the Filer would remove every file whose name ends in . TEXT in the default volume!

Should you ever accidentally create a file with a wildcard in its name in volume VOLNAM, you
can get rid of it this way:

CRr)

Remove what file?
UOLNAM: 7 (Return) or (ENTER)

This will cause the Filer to offer to remove each file in the directory VOLNAM:. You can then
remove the problem file, and retain the other files.

Allowable File Names

What file names are allowable depends on the type of directory used on the volume in which
the file resides. In other words, the directory organization makes the file name rules. The exact
rules for file names are given in the section Programming with files in this chapter. Here is a
summary of the rules.

It is wise to choose names consisting of alphabetic letters and digits; if you want a punctuation
mark within a file name, a hyphen, an underscore, or period is acceptable. Blanks are removed
from file names.

In LIF directories and SRM directories, upper and lower case letters are distinct; “CHARLIE” is
not the same file as ‘““Charlie”’. In WS1.0 directories lower-case letters in a file name will
automatically be converted to upper-case. This exception makes it easier to use wildcards to
move files from one type of directory to another. Only upper case suffixes are allowed in LIF
directories. Lower case suffixes in LIF directories will cause an error.

Don’t use the following characters:

R Filer wildcard characters.
SETSTNEY Used in specifying volumes.
AN Have special meaning with the Shared Resource Manager.

B AR Used to specify the size of a file when it is created.
control characters Control characters are automatically removed from file names.

SRE]

Blanks are removed from file names.

The File System 41

File Name Length

In LIF directories, file names (without suffix) are limited to 9 characters. If the last character in
the file name is not an A, B, C, S, or T, then 10 characters can be used. If a suffix is present, up
to 9 characters may precede the dot and sulffix.

In WS1.0 directores, file names may be up to 15 characters including the suffix.
In SRM directories, file names may be up to 16 characters including the suffix.

No Room on Volume

Obviously there is a limited amount of space in a disc volume. When there is no room on a
volume to create a new file, the system will report an /O error.

You may be able to solve this problem by using the Filer's Krunch command. This command
consolidates all of the volumes free space by moving all of the files on a volume to the front of
the volume

Both the LIF and WS1.0 directory organizations are designed for ‘‘contiguous file space alloca-
tion”. This means that when space is reserved for a file, the disc sectors set aside have sequen-
tial numbers. For instance a file requiring 3 sectors might get sectors 26, 27 and 28; or 31, 32
and 33. Files would not be allocated sectors 13, 56 and 2, because those sectors are not
logically adjacent. To go back to the analogy with file folders in a drawer, if you had a file too
big for one folder you might put it in two or three folders; but you’d want store them next to
each other, not in random places in the drawer.

When a file is purged, all of its sectors are again available for use by another file. As files are
created and purged, the disc space usage will develop ‘“‘holes’ of free space between valid files.
This is called ‘‘fragmentation’. It’s possible for a considerable amount of free space to exist in
the volume, yet be unuseable because it is in pieces too small to use. Since files tend to be small
compared to the total space on a volume, this problem usually occurs when the volume has
relatively little free space left.

To see how fragmented your volume is, use the Filer's Extended Directory List command. This
command lists both the files and the empty space on the volume.

42 The File System

The Shared Resource Management System

The concepts presented so far have all been applied to local mass storage devices. The same
concepts extend naturally to deal with shared mass storage.

The Shared Resource Management System (SRM) allows several workstations (computers) to
be connected into a network that allows sharing of files and resources. This network is
controlled by a system controller. Since files can now be shared between several users, a new
directory structure is needed. Setting up the SRM system is not described in this manual; see
the SRM documentation for that information. Configuring your workstation to access an SRM
system is described in the Special Configurations chapter.

Hierarchical directories

The Shared Resource Management System uses a hierarchical directory structure to organize
its files. This directory structure is a multi-way tree data structure. That is, the first, or top
directory in the structure is called the root directory. Subordinate to the root directory are other
directories which, in turn, may have further subordinate directories. Each directory may contain
files or other directories. When a directory contains only files, it is called a leaf directory. All
files can be called leaf files. The drawing below shows a hierarchical directory structure.

SYSTEMS WORKSTATIONS USERS
SYSTEM_P SYSTEM SYSTEM21 SYSTEM45 ROGER BOB FRED
EDITOR WORK WORK WORK
FILER
COMPILER

The directory SYSTEMS is a special directory used by the BOOT ROM, version 3.0 or newer,
to automatically load operating or language systems.

The directory USERS has three subordinate directories: ROGER, BOB, and FRED. Each sub-
ordinate directory has a single file called WORK. Each file and directory is uniquely specified by
the list of directories from the root to the file. That means several files of the same file name can
exist without confusion if they are in different locations in the directory structure.

To save space, the Filer's Duplicate Link command can be used to link a file into a directory
other than its original location. This allows you to have access to a file, such as the Compiler or
Editor, without making an extra, unnecessary copy. See the Filer Chapter of this manual for
more information.

Once a duplicate link has been set up, if the directory is purged, what happens to the link? Only
the purged directory loses access to the file. All other directories with links to the file can still find
it. The disc space allocated to the file is only reclaimed when no directories have links to it.

The File System 43

Notation

Hierarchical directories are a simple concept, but we need some specialized words and notation
to talk about them.

The directory at the top of the hierarchy is called the ‘‘root” directory. If we want to refer to a
file or directory which is immediately under the root, for instance WORKSTATIONS in the
illustration above, we would write

/WORKSTATIONS

This is read as ‘‘slash WORKSTATIONS” or ‘‘stroke WORKSTATIONS”’. The / indicates the
root directory.

To go further down the hierarchy, for instance to SYSTEMS under WORKSTATIONS, write
/WORKSTATIONS/SYSTEM

and for another level yet
/WORKSTATIONS/SYSTEM/COMPILER

As you can see, to specify a file, the list of directories from either the root directory or the
current working directory to the target file must be specified. The list is delimited with a /.

Such a sequence of strokes and filenames is called a directory path, since it indicates the path
one must follow down the hierarchy to get to a particular file.

SRM Units and Volumes

A workstation connected to an SRM normally has units #5: and #45: set up for SRM access.
The use of two units is in keeping with the idea that there are usually two special volumes (the
system volume and the default volume) through which most file accesses occur.

If the workstation is booted from SRM, unit #45: will automatically be configured to be the
system volume and unit number #5: will be available for use as the default volume. If there is
local mass storage, the system volume can be any volume you desire. To set these volumes, use
the What command from the Main Command Prompt.

Here is how the Filer's Volumes display might look right after booting up a workstation con-
nected to the SRM and having no local mass storage:

Volumes on-lines:

1 CONSOLE:
2 SYSTERM:
3 # SRM:

B PRINTER:

45 % SYSTEMAS:
Prefixis - SRM:

You can see that the system starts out with #5: as the default volume and #45: as the system
volume.

44 The File System

Where do the names SRM: and SYSTEM45: come from? They are actually the names of
particular directories in the SRM’s hierarchy. In this example, the name of the SRM volume is
SRM, and the workstation we are using is at node address 45. Since there is a directory
SYSTEMA45, it is selected as the system volume. All of this selecting is done by the TABLE
program as it automatically configures the system each time you boot.

If you need to specify the SRM volume’s password, you can do it by using this syntax:

SRM:/.<password:

The SRM volume password is also the SRM root directory’s password. That is, they specify the
same thing.

Moving Up and Down the Hierarchy

It would be tedious to type a directory path every time you wanted to access a file. To avoid
this, you can specify the current working directory using the Filer’s Unit Directory command.
The current working directory can be used as the “‘root” to specify subordinate files.

Cu)

Set unit to what directorv?
#5: /USERS/ROGER (Return) or (ENTER)

Once you have done this, unit #5: is in effect a volume named ROGER: which contains all the
files under directory ROGER in the hierarchy. It’s as if you had inserted a disc called ROGER: in
a disc drive. If you now command the Filer with:

List what directory?
ROGER : (Return) or (ENTER)

it will list all the files in subdirectory ROGER:. You could also use the sequence:

List what directorvy?
#5: (Return) or (ENTER)

since directory ROGER:was installed in #5: by the Filer’s Unit Directory command.

Suppose that under ROGER is another directory named MYSTUFF which contains more files.
To list the files in MYSTUFF, use the sequence

List what directory?
ROGER :MYSTUFF (Retun) or (ENTER)

The Filer will realize that MYSTUFF under volume ROGER is itself a directory, and list its
contents. If MYSTUFF were not a directory, it would simply be listed as a file in directory
ROGER.

The File System

You can move the current working directory still farther down the hierarchy in the obvious way.
For instance to make MYSTUFF the current directory of #5:

()

Set unit to what directory?
#5:MYSTUFF (Retun) or (ENTER)

There was no need to specify the entire pathname from the root, because MYSTUFF was
already accessible as a file within volume ROGER.

A special notation is provided to move up the hierarchy. Two periods can be used to denote the
“parent’”’ directory of a file. For instance, after moving down to MYSTUFF, unit #5: could be
moved back up to the parent directory ROGER by:

Cu)

Set unit to what directorvy?
#5: ., (Return) or (ENTER)

To go up two levels, use the double-period twice, separated by a slash:

Cu)

Set unit to what directorv?
#5:,./ .. (Return) or (ENTER)

This can be executed all the way up to the root directory. Of course, if you want to get all the
way to the top, it is easier to go there directly, using a stroke as the ‘‘name’ of the root
directory. For instance, while #5: is assigned to MYSTUFF you could list all the files in the root
directory with the command sequence

LList what directory?
#5532/ (Return) or (ENTER)

45

46 The File System

Default Volume vs. Current Working Directory

The current working directory concept is different from the default volume concept. Specifying
a current working directory is like installing a disc into a drive unit. Specifying a default volume
simply tells the file system what volume name to use when none is specified with a file name.

The two concepts can come together in the Filer’s Prefix command. For instance, typing:

Cr)

Prefix to what directory?
#5: /USERS/BIG_USER (Return) or (ENTER)

has two effects since #5: is an SRM unit. The current working directory of #5: is set to
/USERS/BIG_USER, and the default volume name is set to BIG_USER. If we now type:

Cu)

Set unit to what directory?

#5:, . (Return) or (ENTER)

the current working directory of #5: becomes USERS (the parent of BIG_USER). However the
default volume name is still BIG_LUSER. So the command

List what directory?
: (Return) or (ENTER)

will fail with the message that BIG_USER is not on-line!

The same sort of mistake is commonly made with the system volume. Suppose the current
working directory of #45: is SYSTEM45, and the COMPILER, EDITOR and other system files
are under SYSTEMS. If the current working directory of #45: is changed, the Operating
System won’t be able to find the system programs since it thinks of them as
SYSTEM45:COMPILER and so on. If this happens, you need to get into the Filer and restore
the current working directory of #45:. How can you do so if the Filer is no longer on-line? You
will need to execute the Filer by name, specifying a path all the way down from the root to
wherever it is:

(Select) ((_EXECUTE))
Execute what file®
#45: /WORKSTATIONS/SYSTEM/FILER. (Return) or (ENTER)

Note the dot after the Filer’s name. You don’t want the system to append .CODE in this case.

The File System

Programming With Files

This section describes how to program using the Pascal file operations. It discusses the creation
and disposition of files, the basic operations on file data, and the syntax of file names.

Pascal Primitive File Operations
® The following operations put the file into WRITE Mode:

REWRITE

OPEN

APPEND

SEEK

PUT

WRITE

WRITEDIR

WRITELN {see the section on TEXT files}

F* {if the file is already in WRITE Mode}

® The following operations put the file into READ Mode:

RESET

GET

READ

READDIR

READLN {see the section on TEXT files}

® The following operations put the file in LOOKAHEAD Mode:

F {unless the file was in WRITE Mode}

EOF {unless the file is open for random access}
EOLN {see the section on TEXT files}

READ {of multi-character objects from TEXT files, such

as strings, PACs, integers, reals, enumerated types,
and booleans.}

Creating New Files

A file is initially created by the REWRITE, OPEN, or APPEND operations. However, OPEN and
APPEND are usually applied to existing files. These standard procedures each may take one,
two or three parameters:

REWRITE (filevar)
REWRITE (filevar,name)
REWRITE (filevar,name,thirdparam)

Here “filevar’” is the name of a Pascal file variable; ‘‘name’ is a string which is the system
identification of the file; and ‘“‘thirdparam’ is an optional string which is used with Shared
Resource Manager files to control shared access to the file (see subheadings ‘‘Reset, Rewrite,
Open, and APPEND”’, ‘‘SRM Concurrent File Access”’, and ‘‘SRM Access Rights’’ below). The
name string may include information about the file size, and an SRM directory path to the
relevant directory.

47

48 The File System

When a new file is first created, it is considered ‘‘temporary’’, and it will remain so until it is
closed with a specification that it be locked into the disc directory. Such temporary files don’t
conflict with other files of the same name. A new file created by REWRITE, OPEN, or APPEND
will be thrown away when the program terminates unless the program takes explicit action.

The allowable file name syntax depends on the Directory Access Method (DAM) being used;
this subject is discussed under the preceding section called ‘‘File Naming Conventions’.
However, all file names may have appended to them a specification of the size of the file, which
the DAM may use at file creation time to allocate space. The size specification may take the
following forms:

® Not present. The file will be allocated the largest available block of space for contiguous-
file DAMs (LIF and Workstation 1.0 directory organizations), or an indeterminate amount
of space for the SRM. Example: ‘CHARLIE. TEXT

e [*] on end of file name. The file will be allocated the greater of (second largest free block,
half of largest free block) for contiguous-file DAMs, or an indeterminate amount of space
for the SRM. Example: ‘SUSANNAH[*]’

e [nnn] on end of file name, where ‘“‘nnn’’ is a positive integer. The file will be allocated nnn
blocks of 512 bytes each for contiguous-file DAMs, or an indeterminate amount by the
SRM. Example: ’EXACTLY[1000] which gets 512 000 bytes.

It is permissible to create anonymous files by creating a file without specifying a file name, for
example REWRITE(F). Such files will always be placed on the system volume. Note, however,
that there is no way to request a specific file size for an anonymous file; REWRITE(F,'[500]) is
not acceptable because there is no file name preceding the size specifier.

The REWRITE, OPEN, and APPEND primitives do not necessarily create a new file. Whether
they do depends on whether a file already exists with the given name, and whether the file
variable is already associated with some physical file by virtue of a previous opening operation.

File Position

In order to understand the three modes a file can be in, we need to take some time to discuss
the file pointer and the file buffer, F”.

Associated with each open file is a file pointer. This pointer can be thought of as a marker
indicating how much the file has been read or written. The file pointer starts at the beginning of
the file when the file is opened with RESET, REWRITE, or OPEN. The file pointer is set to the
end of the file if the file is opened with APPEND. The file element pointed at by the file pointer
is called the current component. Each time you read from a file, the current component is
fetched. Each time you write to a file, the new information becomes the current component.

The components of a file are numbered sequentially from 1 to N, where N is the number of
components in the file. The file position is a number from 1 to N + 1 which usually corresponds
to the position of the file pointer.

The File System 49

The Buffer Variable

Each file has associated with it a special variable called the buffer variable or the file window.
This is a variable of the same type as the components of the file. It is referred to as F~ where F is

the file identifier. For example, if F is a FILE OF INTEGER, then F” is an integer variable. The
buffer variable is usually associated with the current component of the file.

File States

Every file which is open is in one of three states or modes at any given time depending on what
was the most recent operation on that file. The file state has to do with whether you are reading
or writing the file and whether you have referenced the buffer variable, F*. The three state are
WRITE Mode, READ Mode, and LOOKAHEAD Mode.

If the file is in WRITE Mode, F” has no special meaning other than as a variable, and referencing
it causes no I/O to take place. This is the mode in which you normally assign to F”, i.e.,

Fb.. := L ;

in preparation for a PUT statement. If you assign from F”, i.e.,

Qv 2= F7a
in this mode you will get unpredictable results.

The READ Mode is also called the LAZY [/O state, because in this mode the buffer varible refers
to the current component of the file, but the file system does not fill it until the first time it is
referenced. In this mode you normally assign from F” in order to read the next component of
the file.

If the file is in READ Mode, referencing F” causes the current component to be fetched from the
file and placed in the buffer variable. When this is done, the buffer variable is full and the file
goes into the LOOKAHEAD Mode. Once the file is in the LOOKAHEAD Mode, F™* may be
referenced as many more times as desired but no more 1/0O will be done.

The LOOKAHEAD Mode is so called because we have peeked at the current component
without having advanced completely past it. In actuality, the current component has been read
into F™ and the file pointer has advanced to the following component. However, the file system
pretends that the current component hasn’t been fetched yet. In this state the POSITION
function returns a value corresponding to the component in the file buffer, which is 1 less than
that corresponding to the true file pointer. Also, in this state, READ(F, V) will assign the value of
F” to V instead of reading the next component of the file. On the other hand, if a write were
done in this state, it would write the component at the true file pointer, and the POSITION
function would appear to advance by 2 instead of 1!

50 The File System

REWRITE(F) (with optional 2nd and 3rd parameters)

If F was already open at the time of REWRITE and no filename is specified, the same physical
file is referenced. If a filename is specified, the current file is closed and the physical file
specified by the second parameter is referenced. This implicit CLOSE is actually a
CLOSE(F,"NORMAL’), and so the file will not necessarily be saved. The file is positioned to its
beginning, and any data it contained is discarded. Thus, one way to overwrite the content of an
existing file is to open it for reading via RESET, then REWRITE it.

If the file variable F is not already associated with a physical file (that is, F is not presently open),
a new file is created and opened for writing. If a file name and size are specified, they will be
applied. The new file created is temporary until it is closed, and in fact is distinct from any
existing file of the same name.

OPEN(F) (with optional parameters)
Opens a file for random (direct) access, allowing both reading and writing. The file pointer is
positioned to the file’s beginning.

If F was already open at the time of OPEN and no filename is specified, the same physical file is
referenced. If a filename is specified, the current file is closed and the physical file specified by
the second parameter is referenced. This implicit CLOSE is actually a CLOSE(F,’NORMAL")
and so the file will not necessarily be saved.

If F is not open and no file name is given, an anonymous file is created. If a file name is given
matching an existing file, that file is used; otherwise a new file is created.

APPEND(F) (with optional parameters)

If F was already open at the time of APPEND and no filename is specified, the same physical file
is referenced. APPEND positions to the end of the file and re-opens it for writing. If a filename is
specified, the current file is closed and the physical file specified by the second parameter is
referenced. This implicit CLOSE is actually a CLOSE(F,’NORMAL’) and so the file will not
necessarily be saved. Any data written will get tacked on to the file; the original content remains
valid.

If F is not already open and no file name is given, an anonymous file is created and the behavior
is like REWRITE command.

If F is not open and a file name is given, APPEND searches for an existing file of that name. If
one is found, it positions to the end and prepares for writing; if none is found, it creates a new
temporary file.

Restrictions on APPEND:

APPEND:INg to text files is not allowed in this Pascal implementation. It only works for data files
(file of <type>).

If the file is in a volume with a WS 1.0 or LIF directory organization, it may not be possible to
APPEND. For this directory type, APPEND is only allowed if there happens to be free space on
the disc immediately following the current end of the file.

The File System 51

Disposing of Files
A program terminates the association between a file variable and a physical file with the CLOSE

procedure. For example, the call may specify that the file is to be deleted from the directory or
made permanent.

CLOSE(F,’SAVE’) Both do the same thing; the file is made permanent in the

CLOSE(F,’LOCK’) volume directory. If file is anonymous (has no name), the file is
closed and then purged.

CLOSE(F) Both do the same thing. If the file is already permanent, it

CLOSE(F,"NORMAL"’) remains in the directory. If it is temporary, it is removed.

CLOSE(F,”PURGE’) The file is removed from the directory whether or not it was
permanent.

CLOSE(F,CRUNCH’) The end-of-file marker is set at the current file position; data

beyond this position is lost. Otherwise like LOCK.

Opening Existing Files
To open an existing file, you must give a file name parameter to the OPEN, APPEND or RESET
standard procedures.

RESET(F, filename’)

Opens an existing file for reading, and positions F to the beginning. If F was already open and
no file name is specified, the file to be read is the one which was open. Otherwise, the file
system searches for an existing file of the specified name and reports an error if none is found.

RESET(F) with no file name specifier will fail unless F is already open.

OPEN(F,’filename’)

APPEND(F, filename’)

OPEN and APPEND search for the named file, and if one is found, the association will be with
that physical file. But note that if no file is found, a new temporary file will be created (see the
comments about file creation shown above).

Note that OPEN(F) and APPEND(F) without a file name will create new files unless F was
already open.

REWRITE(F, filename’)

When REWRITE specifies the name of a file which already exists, a new temporary file is
created. All output data goes to this new file instead of the old one. At the time the file is closed
using CLOSE(, 'LOCK’) or CLOSE (,CRUNCH’), the old one is purged and the temporary
file is renamed. CLOSE(, NORMAL’) or CLOSE(,”PURGE’) will purge the new file, leaving the
old file intact. This prevents destruction of the old file in case the program terminates pre-
maturely.

To get rid of the old file first, open it with RESET and then do a CLOSE(F,’PURGE’).

52 The File System

Sequential File Operations

In Pascal there are two classes of file: TEXT and DATA. Files of type TEXT are so declared in
the Pascal program:

VAR F: TEXT:

Text files are best thought of as lines of characters, separated by end-of-line designators of
some sort. They are intended to represent human-legible text material such as documents.

Data files are files of some component type. They are ordered sequences of variables, all of the
same type. The type may be a predeclared type like INTEGER, or some user-declared type:

TYPE rec = RECORD
name: stringld3013
socialsecurity: inteders
END 3
VAR
ss: file of rec?

A file of char is not the same thing as a text file, because no lines are distinguished in the file of
char.

This section is about data files; the discussion of text files is below. In the discussion, F denotes a
file variable; T is the type of its components; and V, V1, V2 .. are variables of type T.

READ(F,V)

If F is open for reading (by RESET or OPEN), then this standard procedure will store into
variable V the current component of F and advance to the next component. Note that
READ(F,V1,V2 V3) is equivalent to three READs in a row. In the LOOKAHEAD Mode, READ
(F,V) assigns the value of F™ to V instead of fetching the next component of the file, i.e., no I/O
is done.

WRITE(F,V)

If F is open for writing (by REWRITE, APPEND or OPEN) then the value of V is written as the
current component of F and F is advanced to the next component. WRITE(F,V1,V2,V3) is
allowed.

The file variable name can be referenced as a pointer. It points to the “‘current” component of
the file; that is, if F is a file of T, then F” is a variable of type T. F” is called the ‘‘buffer variable”
of F. (This logical buffer is distinct from the physical device buffer!)

HP Pascal specifies the use of ‘‘lazy evaluation’, which simply means that the buffer variable is
not filled until the program references it.

The File System

PUT(F)
PUT and WRITE are related operations. To output data using PUT, first store into the buffer
variable the value to be written, then call PUT:

F*or= U3
PUT (F) ;

This sequence is equivalent to:

WRITE(F s 3

Note that it isn’t enough to just store into F*; you must also PUT the value. For instance:

F* 1= Uls
F* o:= U23
PUT (F)

will store into the file the single value V2. Also, if you fail to PUT the last component before
closing the file, the last component will be lost.

PUT(F) writes the buffer variable, F*, to the current component of the file. That means:
F' or= U3
PUT(F) 3

is equivalent to:
WRITE(F, V)3

GET(F)

This is the complementary operation to PUT, used for input. It throws away the current compo-
nent value and advances the file to the next component.

In WRITE Mode, GET changes the state of the file to READ Mode, but does not change the file
position or do any I/O. For example:

OPEN(F, ‘filename’); {puts file in WRITE Mode}
GET(f)} {puts file in READ Mode}
Y o= F°3 {fetches first file component into V}

In READ Mode, GET causes one component to be fetched from the file, which advances the file
position by 1, but that component is discarded. For example:

RESET(F, ‘filename’);i {puts file in READ Mode}
GET(F) 3 {reads and discards one component}
U o= Fo3 {fetches second file component into V}

53

54 The File System

In LOOKAHEAD Mode, GET discards the component in the file buffer, F*, and changes the
state of the file to READ Mode. This causes the file position to reflect the true file ponter, thus
appearing to advance it by 1. For example:

RESET(F, ‘filename’); {puts file in READ Mode}
Y oi= Fo3 {fetches first file component into V}
GET(F)3 {discards F” and advances position}

which is equivalent to:

RESET(F, ‘filename’)3 {putsfilein READ Mode}
READ(F, W) 3 {fetches first file component into V
and advances file position}

Direct Access (Random Access) Files -

Files of DATA (not TEXT) may be accessed directly, that is, a program can specify that it wants
to read or write the n' record in the file without scanning through the records in sequence. A
file must be opened with the OPEN procedure to allow direct access.

The components of a direct access file are numbered sequentially, with the first being number
one. (Note that there is no acknowleged standard in this area; for instance, UCSD Pascal
numbers the first component of a direct access file as record zero. All HP Pascal implementa-
tions work as described herein.)

When a file is opened, it is positioned at the first component. If sequential [/O operations are
performed, the file components will be accessed in ascending order. There are several ways to
randomly access the n'" record.

READDIR(F,N,V)

The read-direct standard procedure positions F to component N of the file, and then reads the
value into variable V. Subsequent READ calls would receive records N+ 1, N+2 and so on.
READDIR(F,N,V1,V2 V3) is equivalent to the sequence

READDIR(F s+N V1) 3
READ(F »V2) 3
READ(F sW¥3) 3

Also:
READIR(F s Ny V)3

is equivalent to:

SEEK(F s N)3
READ(F .+ N) 3

The File System 55

WRITEDIR(F,N,V)
The write-direct procedure positions F~ to component N of the file, and then writes value V.
Subsequent writes will place values in components N+ 1, N+2 and so on. For example:

WRITEDIR(F sN»W1,V2,U3)3

is equivalent to:

WRITEDIR(F sNsU1)§
WRITE(F s2)
WRITE(F s3)

.
1]
.
3

Also:
WRITEDIR(Fs Ny U) 3

is equivalent to:

SEEK(Fs N)3
WRITE(F» LU}

SEEK(F,N)
As with the other direct-access procedures, file F must be opened (for both read and write).
SEEK positions F” so that the next call to READ or WRITE will fetch or place component N.

OPEN(F s 'CHARLIE ") 3
SEEK(F4100) 1§
GET(F) 3§

Y100 1= F™ 3

This definition is certainly counter-intuitive in that the program must not do an initial GET after
opening the file, but must after the SEEK command.

SEEK works most smoothly (in the most natural fashion) if used with READ and WRITE:

SEER(F +N) 3§
READ(F 1) 3

Remember that SEEK leaves the file in WRITE Mode, so that in order to read the current
component by referencing F"you must first do a GET command. That means:

SEERK(F s iN) 3
WRITE(F, W)}

is the same as:
SEEK(F, N) 3§
F™ := U3
PUT(F) 3

56 The File System

However:

SEEK(F s N3
READ(F s+ V)3

is equivalent to:

SEEK(F» N)3
GET(F) s

U o= F"3
GET(F) 3

POSITION(F)

This function returns an integer value which is the number of the next component which will be
read or written. If the buffer variable F” is full, POSITION returns the number of that compo-
nent.

Please be cautious with this function if the file is in the LOOKAHEAD Mode, i.e., if you have
read the current component by referencing F”. In this mode, POSITION is correct for reading
but is 1 less than the correct value for writing.

MAXPOS(F)

This function returns an integer value which is the number of the last component which has
ever been written into the file. Note that the component must have been written; merely
SEEKing out to some far component is not enough to cause the maximum position limit to be
extended.

Textfile Input and Output

A TEXTFILE is composed of variable-length lines of characters. It differs from FILE OF CHAR
in that the lines are variable-length records and are separated by end-of-line marks. Pascal 2.0
and later versions support three different text file representations. Text files are the basis of
human-legible input and output. This means that they are used for ‘‘formatted” 1/O such as
printouts.

Declaring a Text File
A text file must normally be declared in the following way:
VAR F: TEXT:
All text files must be declared except the two standard files INPUT (corresponding to keyboard)

and OUTPUT (which sends its output to the CRT). These two files, if used, must be listed in the
main program header:

PROGRAM X (INPUT.OUTPUT)

However, they must not be declared in the body of the program.

The File System 57

In addition, there are two other ‘‘standard’’ system files which may be used, called KEYBOARD
and LISTING. If these two files are used, they must appear both in the program heading and in
a VAR declaration, as follows:

PROGRAM X (INPUT,0UTPUT KEYBOARD +LISTING) 3
VAR
KEYBOARD sLISTING: TEXT]
BEGIN
END.

Don’t worry about why INPUT and OUTPUT must not be declared yet KEYBOARD and
LISTING must be; that’s how it is. Note also that the four standard files are automatically
opened by the Operating System before the program runs. The standard files do not generally
appear in RESET or REWRITE statements, although they may be closed and re-opened if
necessary. Closing and re-opening standard files is not recommended.

KEYBOARD and INPUT both take characters from the keyboard; the difference is that charac-
ters read from INPUT are echoed to the CRT, while those read from KEYBOARD are not. The
file LISTING is opened to PRINTER:LISTING.ASC which is the standard system printer. (Note
that since PRINTER: is normally an unblocked volume, the file name part of the specifier is
ignored. On the other hand, if PRINTER: is a mass storage volume, the file name is significant.
It's a good habit to include a file name even when going to unblocked volumes.)

Representations of a Text File
The way lines of characters will be represented in a text file is determined when the file is
originally created.

If the file name given in the REWRITE statement which creates the file ends in the suffix .ASC’,
the file representation used is LIF (Logical Interchange Format) ASCIL In this representation,
each line is preceded by a signed 16-bit length field telling how many characters are in the line.
In this representation, there is no restriction on what characters may appear in the line.

If the creation file name ends in the suffix . TEXT’, the representation used is known as
“Workstation 1.0 format”. This format is compatible with the UCSD Pascal P-system textfile
representation, and may be used as a non-HP interchange format.

The WS 1.0 format precedes lines with a leading-blank compression indication, and terminates
each line with an ASCII carriage-return character. Leading blank compression occurs when a
line is written, and the compressed blanks are expanded when the line is read. When using this
format, don’t write the characters NUL (CHR(0)), CR (CHR(13)) or DLE (CHR(16)). Moreov-
er, note that tabs (CHR (9)) are not expanded! Generally it is wise to avoid writing any
characters with ordinal value less than 32 into WS 1.0 textfiles.

If the textfile is created anonymously (no file name given) or without a suffix, the ‘‘data file”
representation is chosen. In this case, a carriage return denotes end-of-line, and all other
characters are passed through uninterpreted.

58 The File System

Note

If a file is to be used by the Editor, you should not store control
characters (characters with ordinal values less than 32) in it. These
characters may cause erroneous cursor placement, which results in
data being inserted or deleted in the file at the wrong place.

Note
The representation of a text file is not a function of the directory
format being used. An ASCII file may be present in a WS 1.0 direc-
tory, or a WS 1.0 text file in a LIF directory.

The LIF ASCII representation can only be used if the LIF ASCII Access Method module
(ASC_AM) is installed in your system’s INITLIB boot file. The WS 1.0 format can only be used
if the UCSD Text Access Method (TEXT_AM) module is installed in INITLIB. These modules
are present in INITLIB when the Pascal system is shipped, but can be removed if not needed.

If the required Access Method is not installed, the system will choose the *‘data file’” representa-
tion regardless of file name suffix.

Formatted Input and Output

The use of WRITE, WRITELN, READ, and READLN for formatted I/O operations with text files
is described in many Pascal reference documents and will not be repeated here, except to take
note of the behavior when reading and writing character strings.

HP Pascal supports two forms of character string, generically referred to as PAC (for Packed
Array of Char) and STRING. A PAC is a variable whose type specification is of the form

TYPE T = PACKED ARRAY [1..N1 OF CHARS

where N is some integer constant. The lower bound of a PAC must be 1 in HP Pascal, although
Series 200 Workstation Pascal allows any arbitrary lower bound if the $UCSD$ Compiler
option is used.

When a string literal value is assigned to a PAC, if the string is shorter than the declared length
then the string is blank-padded to the declared length. Thus if a 5-character literal is assigned to
a 10-character PAC, the last 5 characters of the PAC will get blanks. This same behavior occurs
on input of a PAC value (see below).

When a PAC is written to a text file, all N characters are put out unless a shorter field specifica-
tion is given in the WRITE statement:

TYPE .

PAC = PACKED ARRAY [1..101 OF CHARS

VAR

5: PAC:
§ 1= ‘abcde’} {PAD WITH 5 TRAILING BLANKS}
WRITE(F +5) 3 {WRITE 10 CHARACTERS?Y
WRITE(F 5:3) % {WRITE FIRST 5 CHARSY

WRITE(F5:15) i {WRITE 5 BLANKS, THEN ALL 10 CHARS OF PACY

The File System 59

A STRING is a variable whose type specification is of the general form:
TYPE 8 = STRING [NI13

where N is a constant between 1 and 255 giving the maximum allowable length of the string.
STRINGs differ from PACs in having an implicit variable ‘‘current”” length. Usually the length of
a string is the length of the last string value assigned to it, although string length can be explicitly
manipulated by the standard procedure SETSTRLEN.

When a STRING variable is read from a text file, its length is set to the length of the incoming
string (see below). When written, a STRING takes the number of characters specified by its
current length.

Reading a String or PAC from a Textfile
When a string is read from a textfile, its length is usually determined by an end-of-line marker.

If the entire string is filled before end-of-line is reached, the read operation ceases. No error is
reported, and the next character read will be the one following the last one read.

When reading strings, an end-of-line must be explictly passed by READLN. If you repeatedly
read into a string while positioned at an end-of-line marker, you will keep getting back an empty
STRING or a PAC of all blanks. The approved way to read long lines into short strings is:

WHILE NOT EOF(F) DO
BEGIN
REPEAT
READ(F +5) 3§
+++ {pProcess the rPiece of stringl}
UNTIL EOLN(F) 3 ‘
READLNC(F)3

+ 4

END 3

You should be aware of one other fact about end-of-line handling in READs: reading strings or
PAC:s is the only situation in which end-of-line is not automatically ‘‘swallowed”’. The Standard
states that when EOLN(F) is true, the value of F” is a blank. When reading a number, for
instance, end-of-line is not treated differently from any other blank in the character stream of
the input text file.

60 The File System

RESET, REWRITE, OPEN and APPEND

The optional third parameter to the standard file opening procedures is used at the time of file
creation to control concurrent access to files and to specify file access rights via passwords. This
parameter is a character string whose syntax conforms to the following definition:

i

third_param [concurrency_word]
[password_list]

concurrency_word ‘"’ password_list

concurrency_word 1= ‘‘SHARED”
: “EXCLUSIVE”
“LOCKABLE”

X321

capability [;" capability]
capability password ‘" access_right_list
access_right_list access_right { *“,”" access_right }

access_right = "READ”

: “WRITE”
“PURGELINK”
“CREATELINK”
“SEARCH”
“MANAGER”
= “ALL”

password_list

Note that in the passwords themselves, upper and lower case letters are distinct. Examples of
third parameter strings:

"'SHARED’
"EXCLUSIVE,MYSECRET:MANAGER’
"LOCKABLE,R:READ;W:WRITE’
"Charley:ALL’

Debugging Programs Which Use Files

The file system uses the TRY-RECOVER and ESCAPE mechanism in its normal internal opera-
tions. For instance, when opening a file several escapes may occur internal to the File System or
driver calls. These ‘‘errors’’ don’t get back out to the user program.

But if the Debugger is used on such a program and error trapping is enabled, the Debugger will
stop the computer on each internal escape. This can be very confusing. The clue that this is
happening is that the line number displayed by the Debugger in the lower right corner of the
screen doesn’t change during the FS call.

The most common escape codes generated in this fashion are -10, 2080 and -26. You can
suppress the Debugger’s activity on these codes with the following “‘Escape Trap Not™ Debug-
ger command:

ETN -26 2080 -10

The File System 61

SRM Concurrent File Access

Three modes of access to shared files are allowed:

e EXCLUSIVE: No concurrency. Only one workstation may open the file at a time. This is
the default for all files opened on the SRM.

e SHARED: No controls. The file may be opened by any number of workstations for both
reading and writing. This is particularly dangerous for multiple writers since, for perform-
ance reasons, some local buffering is done in each workstation. Different buffers may
overlap parts of the same file, and may not contain identical data! Shared file users will not
be aware of changes in actual end-of-file induced by the actions of other users.

Shared files are primarily intended to be used by multiple readers.

e LOCKABLE: This mode provides strict concurrency interlocking by means of file opera-
tions LOCK, WAITFORLOCK, and UNLOCK. The file must be locked to perform any
operation on it; only one reader/writer may access the file at a time. A series of operations
or a single operation be be performed while it is locked. The initial lock obtains the
necessary physical file status information from the SRM, and unlocking updates all the
status information on the SRM as well as flushing buffers. Thus when the file is unlocked,
its contents are always complete and consistent.

Note

Shared access is allowed concurrently with lockable access and may
circumvent the integrity provided by the locking mechanism.

The user-callable routines which support locking are provided in the library module LOCKMO-
DULE, which is in the standard system LIBRARY. To use them, the program must IMPORT
LOCKMODULE. The specifications for these routines are:

e FUNCTION LOCK (ANYVAR F:FILE): BOOLEAN; This function returns true if the lock
succeeded, or false if the lock failed because the file was already locked. Other IO errors
such as file not open generate an error which may be trapped using TRY/RECOVER (see
System Programming Language Extensions).

¢ PROCEDURE WAITFORLOCK (ANYVAR F:FILE); This procedure sends the SRM a
request to lock the file, and then waits until it is confirmed.

e PROCEDURE UNLOCK (ANYVAR F:FILE); This procedure releases the file so another
workstation can lock it.

The file locking capabilities are primarily intended for data files (Pascal file of <type>) which
are opened for random access using the standard procedure OPEN. Suppose F is a file which is
not already open. The cases are:

® OPEN (F, ‘filename’) The existing file is opened for exclusive access. The open will
fail if the file is already open by some other workstation. This is the default.

® OPEN (F, ‘filename’» 'EXCLUSIVE’) The existing file is opened for exclusive ac-
cess. The open will fail if the file is already open by some other workstation.
® OPEN (F, ‘filename’, ‘SHARED’) The file is opened for shared access. Any num-

ber of workstations may have the file open SHARED at the same time. They may read or
write -— there is no synchronization.

62 The File System

@ OPEN (F, ‘filename’s ‘LOCKABLE’) The file is opened in such a way that no
access is permitted unless the file is first put in the locked state. Any number of worksta-
tions may have a file open LOCKABLE at a time, but only one workstation may have the
file locked.

REWRITE, to a file which is already open within the program performing the REWRITE, simply
repositions the file to its beginning and sets it up for writing.

If REWRITE specifies the name of a file which does not exist, a new file of that name is created
and used.

If a physical filename is given and a file of that name exists, the existing file is opened with
whatever concurrency specification (shared, exclusive) was given in the REWRITE. If no
physical file exists, one of the given name is created and opened with the requested concurren-
cy specification. This action is in addition to the creation of the temporary file, and helps
prevent interference by other workstations.

Surprising effects may occur if two workstations REWRITE the same physical file concurrently.
The one closed last will remain in the SRM directory.

Note that REWRITE (F » ‘LOCKABLE /) is probably not a sensible operation. However, it does
not generate an error.

The File System 63

SRM Access Rights

Passwords can be used to restrict the types of access allowed to a file (on the SRM a directory is
also a file). They can be set by the Filer's Access command, or at the time a file is created.
Passwords can control the following six types of access:

e READ

e WRITE

e SEARCH

e CREATELINK
e PURGELINK
¢ MANAGER

e ALL

Any access rights for which no password is specified belong to the set of public capabilities
which are granted to any workstation opening the file without specifying passwords.

The word ALL denotes the six access types collectively. When an ALL password exists, there
are no public capabilities. The ALL password allows any file operation to be performed.

SEARCH capability is required on all directories along the pathname to a given file.
RESET requires READ access to the file.

Both READ and WRITE capability are required if the file is opened by calls to OPEN or
APPEND.

To REWRITE an existing file, any passwords in the file specification (second parameter to
REWRITE) are used only to purge the old file. However, one of the three capabilities READ,
WRITE, MANAGER must also be granted to open the old file before purging it. The new file
created by REWRITE will have the passwords specified in the third parameter; until this new file
is closed, any operations may be performed on it.

WRITE capability on the directory in which it resides is required to CLOSE '"PURGE’ a file, in
addition to the SEARCH capability needed to open the file and PURGELINK capability on the
file.

To CLOSE 'LOCK’ a file, WRITE capability is required for the directory, in addition to the
SEARCH capability needed to open the file.

If a password with MANAGER capability is used to open a file, any file operations may be
performed, since the manager password would allow the access types to be changed. For
example,

REWRITE(F+‘FILEL’s’A:ALL ") Gives no public capabilities.
REWRITE(F,‘FILELl‘, M:MANAGER ') All capabilities except MANAGER are public. This

allows any file operations to be performed, but the manager password "M’ is required to change
or set passwords.

64 The File System

Chapter

3

The Editor

Introduction

This chapter introduces the features of the Pascal Workstation’s Editor. The Editor enables you
to create, change, store and retrieve both programs and textual documents. The Editor has
built-in reminders (prompts) and uses single keystroke commands.

The Editor is a cursor-based screen editor. (The cursor is the blinking underline symbol on the
screen). This provides access to any part of a text file through movement of the cursor. You can
move rapidly through text files to read and edit your text.

The programs and documents created by the Editor are usually stored as TEXT files but can be
stored as ASCII files or DATA files. ASCII files can be used with the other language systems that
run on your computer.

This chapter has four main sections. The first two sections demonstrate how to enter and use
the Editor by leading you through writing a short Pascal program. The next section, “‘A Closer
Look”’, presents more detailed information about the Editor. The last section, ‘‘Editor Com-
mands’’, contains an overview or summary of all the Editor commands, a glossary of terms, and
a semantic and syntactic description of each Editor command in alphabetical order. If you have
questions about any of the commands covered in the sample session, this last section should
answer them. Once familiar with the Editor, you can use the overview/summary of the Editor
commands for quick reference.

65

66 The Editor

Entering the Editor

It is assumed that the Pascal System is already ‘‘up and running’’.

(Command: Compiler Editor Filer Initialize Likrarian Run eXecute Version ?W

This prompt tells you that you are at the system’s Main Command Level — the level from which
all the Pascal subsystems (Compiler, Editor, Filer, etc.) are entered. Entry to any subsystem is
accomplished by typing the first character of the name of the subsystem you wish to enter.

Note
If you have a system workfile (created in a previous Editor session or
in the Filer subsystem), first go into the Filer and use the Save, New
and Quit commands to store and release the workfile. Then exit the
Filer subsystem.

When the system is delivered to you, the Editor is on the disc labeled “ACCESS:” and is
named:

ACCESS:EDITOR

Now press the (_E_) key. You can use uppercase or lowercase: the computer treats both
exactly the same while at the Main Command Level. If the Editor code file is on-line, the screen

clears and displays:

(Loading ‘ACCESS:EDITOR’ 1

If you copy the Editor code file to another disc, which has a different volume name, you should
tell the operating system where to look for the Editor. (See the What command in Chapter 1)

The Editor

Creating a Text File
When you enter the Editor, the following prompt is displayed.

()

Editor [Rev, 3.0 15-APr-841

Copvridght 1982 Hewlett-PacKard Companv.
All rights reserved.

No workfile found.
File? (<ent> for new files <stops exits)

This tells you that you are entering the Editor without a system workfile and requests a file
name. Respond by pressing the (Retum) or (ENTER) key to instruct the Editor to create a new text
file for your use. The file will be named later when leaving the Editor.

The Editor can also be directly entered from the Compiler subsystem. This is covered in the
Compiler chapter.

The Editor Prompt

The screen clears again and displays the Editor prompt on the top line:

(ﬁ *Edit: Addst Cepy Dlete Find Insrt Jmp Relace Quit Xchng Zar 7

You are now in the Pascal Editor with a new file. The Editor prompt shows the most common
commands used in the Editor. This is called a “‘prompt’’ because it prompts you to take some
action, i.e., give the Editor a command.

The first character of the prompt line (» or «) indicates the direction of cursor movement (i.e.,
the way the cursor moves when (_TAB), (Return) or (ENTER) keys, or the space bar is pressed).
When the ‘>’ character is displayed, the cursor will move ‘‘forward” in the text. Similarly,
when the ““<’’ character is displayed, the cursor will move ‘‘backwards” in text. Pressing
(>,) or (_+) wil set forward direction, while (_ <), (,), or (-) will set
reverse direction.

The character indicates the direction that searches take place in the Find and Replace com-
mands, also the Delete and Page commands.

The prompt line shows a partial list of commands available in the Editor. To see the rest of the
commands, type (_?_). The screen shows the Editor’s alternate prompt:

(7 *Edit: Mardin Pade Set environment WYerify 7 [3.01

67

68 The Editor

This alternate prompt also shows the revision number of the Editor enclosed in brackets. Type
(2) again and the main Editor prompt reappears.

All of the commands in the Editor are initiated by typing a single key corresponding to the first
character of the command shown in the Editor prompt. Again it does not matter whether the
character is uppercase or lowercase — the Editor accepts either one. Now that you are in the
Editor and understand something about the Editor prompt, let us begin the sample Editor
session.

A Sample Editor Session

Feel free to skim this section if you are familiar with screen oriented editors. You may even
prefer to try out the Editor commands on your own. If you choose to experiment with the Editor
commands, do not use any files you cannot afford to lose.

If you are still reading, step through the following examples on your machine. Doing the
examples will help you learn faster than just reading about them.

Creating Text

The most direct way to generate text is with the Insert command. Initiate the Insert command by
pressing (|) and the screen responds with the following prompt:

(*Insert: Text <bsir,y <clr Inx [<sel* accertsy <sh-sel> escares])

While in the Insert command, any of the regular character-entry keys (the main keyboard) or
the numeric pad keys (on the right) may be used. With a few exceptions, using the key clusters
on the top of your keyboard or key sequences is not advised. (Most of these keys
generate a question mark (7) while in the Insert command. Others have results which may
surprise you). Use key sequences only if you are working with Stream files. (See Chapter
1 for details on the use of Stream files). The exceptions are the cursor control keys,

(_BACK SPACE), (CLR LN), (ANY CHAR) and (_DUMP ALPHA) (which sends a copy of the screen image to
your printer).

Let’s start typing in a Pascal program now. Press or and then type the text shown
in the following display. If you make a mistake, use to move the cursor backward
and then type the correction. You can use to delete the most recently inserted line.
Prompts in the Editor always show actual key options in the form of a key abbreviation shown
in (<) and () symbols.

The word “‘binary’’ is misspelled in the display; leave it that way for now.

Notice that when you press (Retun) or (ENTER) after typing the first line, the cursor returns to
column one (the column that the “P”’ in PROGRAM is in). To type the second line, use to
indent the comment enclosed in the braces. The next time you press or the cursor
automatically returns to the indented position created in the previous line. This indenting
feature proves handy when writing Pascal programs as it adds visual clarity to the code.

The Editor

*Inserts Text <bs>y <eclr 1Inx [<sel> accerPtss <sh-sell escares]
PROGRAM Binerv_.search(INPUT,0UTPUT)
{This Prodram does a binery search
on an arravy of characters to find a
"Kev" character inPut by the user.?

The display above shows what your screen should look like after the first few lines are typed. To
move the cursor back to column one for the next line, press and hold (BACK SPACE). The
keyboard automatically ‘‘repeats’” any key that remains pressed.

([)

Insert: Text <hsis <clr Inx [“sel acceptss <sh-sel: escares]

PROGRAM Binerv_search(INPUT,OUTPUT) 3
{This Pprodram does a binery search
on an array of characters to find a

"Kev" character input by

the user.}

VAR

done :

BOOLEANS

kev 1
alpha @
loors torps mids btm :

CHAR
ARRAY [1..261 of CHARS
INTEGER}

When your screen looks like the display above, press (Select) ((EXECUTE)) to complete the
insertion. The screen displays the Editor prompt along with the text you inserted. Next we will
save this program fragment on the disc and then return to create more text.

Storing Your File and Returning to the Editor

This section shows how to save a file on a disc and then return to the Editor. It is a good idea to
do this periodically when writing and editing large text files. Although power outages occur
infrequently, it can be devastating to lose an entire session of work. Occasional updating of your
file secures your work against this possibility.

Press (_Q) to initiate the Quit command. The screen clears and displays:

PQuits
Urpdate the workfile and leave
Exit without updating
Return to the editor without updating
Write to a file name and return

Before typing anything, find the disc labeled DOC : and insert it in your disc drive in place of the
disc labeled ACCESS:. Now press (_W) and the screen displays:

*Quit:
Name of output file (<ent> to return) --3

69

70 The Editor

The prompt is requesting a file specification. Respond by typing DOC : BINSEARCH followed by
(Retum) or (ENTER). The screen now displays:

Quits

Writing..

Your file is 275 bvtes lond,

Exit from or Return to the editor?

The exact number of bytes may differ with what is indicated in the line above.

Now press (_R_). The screen fills with your text and the cursor is positioned where it was when
you initiated the Quit command.

Copying Text from Other Files

The Insert command is the most common way of creating text but other commands are avail-
able. The Copy command allows you to copy specified text from another file.

On the DOC: disc is a text file called BINDOC . TEXT which you are going to copy into your
current text file. Position the cursor by pressing and then (_E_) (for Jump to End). This
command sequence moves the cursor to the end of your text file. (More on the Jump command

later). Now press and your screen displays:

(ﬁ “Copys: Buffer File <sh-sel ‘]

The Buffer option is demonstrated along with the Delete command later in this section. Now
press (_F_) (to Copy from a File) and the new prompt appears:

*Copy: FilelmarKersmarkerl 7

The system is requesting a file specification. Type DOC:BINDOC and press (Return) or (ENTER).
The . TEXT part of the file name does not have to be typed,; it is automatically supplied by the
Editor. The volume name , DOC :, had to be specified because otherwise the Editor would look
for the file on ACCESS:, the default volume. See Chapter 2 for further information on the
default volume.

The Editor

The entire file DOC:BINDOC. TEXT has been copied into your current text file in memory.
The copy always occurs at the cursor position. This is why you moved the cursor to the end of
the file before the copy. The screen now appears as follows:

(")

*Edit: Addst Cpy Dlete Find Insrt Jmp Replace Quit Xchng Zap 7

PROGRAM Binerv_search(INPUT OUTPUT) 3
{This prodram does a binery search
on an arrav of characters to find a

"Kev" character inPut by the user,}
VAR done : BOOLEAN;S
kKevy : CHARS

alrha : ARRAY [1..26] of CHAR:
loops tops mids btm : INTEGER:

BEGIN {Binerv_search?}
done:=FALSE] btm:=037 tor:=2B3 {initialize}
FOR loop:=1 TO top DO alrphalloorl:=CHR(loor+G4);
WRITELN('TyPe urprercase character for a Kev ')}
READ(Key)3i WRITELN;:
WHILE NOT done DO
BEGIN {This is the actual binery search}
mids= ROUND((tor + btm)/2)3
IF Key = alphalmid]l THEN done:= TRUE
ELSE IF Kevy « alphalmidl THEN top:=mid
ELSE btm:=mid3}
IF top=btm THEN BEGIN

. J

To Copy only part of a file, a beginning and ending marker are specified. These markers must
have been previously set in the text file being copied. (See the Set command in the ‘‘Editor
Commands” section of this chapter for further information on setting markers). Now that you
have your screen full of text, let’s look at the general pattern of leaving an Editor command and
some ways to move the cursor.

Confirming or Aborting Commands

The (Select) ((_EXECUTE)) key tells the Editor to accept all of the insertions or changes you have
made in the text file. The cursor remains where it was when you pressed (Select). Conversely,
holding down the (SHIFT) key while pressing (shown as (SHIFT)-(Select)) tells the Editor to
ignore all of the changes made since initiating the command and leaves the cursor where it was
when the command was initiated. (The ((ESC) key also performs this function on keyboards so

equipped.) Both key sequences (and (SHIFT) -(Select)) return you to the main Editor prompt.

The changes are stored in the computer’s internal read/write memory but are not made permanent
on a mass storage medium until you exit the Editor and use one of the options that writes the
information to a file.

71

72 The Editor

Not all commands let you abort changes with -(Select) and not all require for accept-
ance. For instance, the Copy from buffer command is accomplished by simply pressing
. The text is copied and the Editor’s prompt appears with no other action on your part.
The specifics of how each command uses these keys is discussed as each command is pre-

sented.

Moving the Cursor
Now that you have some text on the screen, experiment with positioning the cursor. The arrow

keys, the and (ENTER) keys, the key, the space bar, the mouse, and the cursor wheel

(also called the knob) all move the cursor. The wheel normally moves the cursor left or right,
depending on which direction you turn it. If you hold down the key while turning the wheel,
the cursor moves up or down while remaining in the same column position.

An integer in the range 1 to 9999 can be used as a “‘repeat factor’’ before all of the cursor
control keys and some of the Editor commands. (Repeat factors must be in the range 1 to 4095
for use with the key). The result will be the same as if you had pressed the key that many
times. For instance, typing the number 4Z and then pressing the space bar causes the cursor to
move 42 characters in the current direction.

The Jump Command offers another means of cursor positioning. Press and the top of
your screen displays:

f)

*JUMP: Begin End MarKker <sh-sel:

PROGRAM Binerv.search(INPUT »OUTPUT) 3
{This prodram does a binerv search
on an arravy of characters to find a
"Key" character inPut by the user.}

Typing causes the cursor to jump to the beginning of the file, in this case directly above
the (P) in PROGRAM, and the Editor’'s main prompt reappears. Now press (_J] then (_E)
and the cursor moves to the end of your text file as shown in this partial display:

IF kev = alphalmidl THEN done:= TRUE
ELSE IF Kev < alphalmidl THEN top:=mid
ELSE btmi=mid3}
IF top=btm THEN BEGIN
done:=TRUESF mid:= -11
END 3
END 3
IF mid>0 THEN
WRITELN(‘Key =-‘sKevs’- 15 in Position ‘smid:2)
ELSE WRITELN('Key -~ ‘sKevys’ - was not found’)j
END.__
\ W,

You can also Jump to previously set markers (see the Set command in the “‘Editor Commands’’

section) by typing (_ M) followed by a marker name.

The Editor

The beginning and end of a file are simply the first and last characters in the current text file. In
this case, the position directly above the (P) in PROGRAM and the space following the final word
END . are the first and last characters, respectively. The Editor adjusts these internal pointers
automatically as the text file is changed.

The Page command lets you move through a file one screen (23 lines) at a time. It is roughly
equivalent to using a repeat factor of 23 with (_1) or (_]) depending on the direction
shown in the prompt. If the cursor is not at the end of the file, press (_E). Now type <
to change from the forward to the backward direction and press (_P_) (for Page). The top half
of your screen now looks like:

(")

<Edit: Addst Cpy Dlete Find Insrt Jmp Rplace Quit Xchng Zar 7

PROGRAM Binerv_search(INPUT,OUTPUT)
{This Program does a binerv search
on an arravy of characters to find a
"Kev" character inPut by the user.l

VAR done : BOOLEAN;]
Key : CHARS
alrha : ARRAY [1..2B61 of CHAR]
loors torsy mids btm : INTEGER]

BEGIN {Binerv_search?}
done:=FALSE} btm:=037 torP:=ZB3 {initialize}

Notice that the cursor is positioned at the ¥ AR declaration in the program which is 23 lines from
the end of the file. Since the cursor movement direction is still backward, type * to change it to
forward. The Page command is especially handy when moving through a large file.

Deleting Text

Now position the cursor under the first bracket on the second line of the program and press
(D). This initiates the Delete command. Moving the cursor removes text from the file. To
restore the text, use any cursor control key which moves the cursor back over the area where

text has been removed. The (_BACK SPACE) key and the cursor wheel work well for this.

Upon pressing (_D_), the screen displays:

()

sDelete: < » <“Mouvwind commands> [<sel> deletes, <sh-sel> abortsl

PROGRAM Binerv_search(INPUT ,0UTPUT)
{This prodram does a binery search
on an arrav of characters to find a
"Key" character inpPut by the user.}

VAR done : BOOLEAN]
Kev : CHARS
alpha : ARRAY [1..26]1 of CHAR}
loorps torpy midsy btm : INTEGERS

73

74 The Editor

First make sure the direction is forward (>) as shown above and then type 4 followed by or

ENTER). This uses a repeat factor and moves the cursor 4 lines, deleting text as it goes. (The
deleted text is temporarily stored in the copy buffer). Now press (Select) ((_EXECUTE]) and the screen
displays:

[)

*Edit: Addst Cpy Dlete Find Insrt Jmp Rplace Quit Xchng Zar 7

PROGRAM Binerv.search(INPUT OUTPUT)
VAR done : BOOLEAN;]
key : CHARJ
alepha : ARRAY [1,.2681 of CHARS
loops topy midy btm : INTEGER:

Before typing any other keys or moving the cursor, press then (_B_). This takes the
information stored in the copy buffer and copies it into the text file beginning at the current
position of the cursor. Since the Delete command just filled the buffer with the text that was
removed, the Copy from Buffer command simply returns the screen to its state before the
Delete command was entered.

The top of the screen should now display:

()

*Edit: AdJst Cepy Dlete Find Insrt Jmp Replace Quit Xchng Zar 7

PROGRAM Binerv_search(INPUT ,OUTPUT)
{This prodram does a binery search
orn an arrav of characters to find a

"Key" character input by the user.}
UAR done : BOOLEAN;
key : CHARJ
alepha : ARRAY [1..261 of CHARS
loopy topy mids btm : INTEGER]

Recovering Deleted Text

As the example shows, even if you complete the Delete command using (Select) ((_EXECUTE))
instead of -(Select), you can still change your mind and recover that text using the Copy (from
buffer) command. Take care not to wait too long or depend on this too heavily as there are other
commands which alter the contents of the buffer. None of the cursor movements alter the buffer in
any way.

Moving and Duplicating Text

The sequence of the Delete and Copy (from buffer) commands provide a convenient way of
moving text to different parts of the file. For instance, in the operation just completed above,
any of the cursor control keys could have been used to reposition the cursor after the deletion
occurred and before the Copy from the buffer was executed.

The buffer is ‘‘filled”” with the text affected by the Delete command and by the Insert and Zap
commands. Doing a Copy from buffer sequence does not change the contents of the buffer.
This feature lets you copy the same text in numerous places.

The Editor 75

Whether the Delete command was completed with the ((Shitt) (Select) ((_EXECUTE)) or
((SHIFT) -(EXECUTE)) sequence makes no difference to the copy buffer. What this means in
practical terms is that the Delete command allows you to fill the buffer without affecting your
original text.

So if you want to duplicate the text instead of movingit to a different location, use the sequence:

Press (_D) to initiate the Delete command.
Cause some cursor movement. This deletes text and stores it in the copy buffer.

Press (SHIFT) -(Select) to recover the text that was just deleted.

Reposition the cursor to where you want to duplicate the text.
5. Press to execute the actual copy at the new cursor position.

LN S

Changing and Altering Text

Mistakes or necessary changes in a program or text file are not always obvious when creating
text. The Editor features commands which allow you to go back and make changes when
needed. These are the Replace and eXchange commands and the Delete/Insert sequence.
These will be demonstrated by making corrections to the sample program text.

Press (J) to move the cursor to the beginning of the file and then type 5 and press
to initiate the Replace command. The prompt at the top of the screen appears:

(r *Repl[S1: L W <targiisubi=>5 ‘]

Press and to tell the Editor that you are going to give it a Literal string and that
you want to operate in the Verify mode. A Literal string may occur as a word or as part of a
word. The alternative is a Token string which must occur as a word. The Verify mode makes the
changes one at a time after asking you if you want this occurrence replaced. Now type:

/inery//inary/

The slashes are used to delimit the target and substitution strings. Any non-alphanumeric or
non-control characters can be used as delimiters. This is necessary when the slash is part of the
search string or replacement string. Notice also that “inery’’ is specified instead of ‘‘binery’.
This is because two occurrences of the word are ‘‘Binery’’. The two words are unequal.

After you type the final delimiter, the screen clears and displays:

()

*RP1L3]: <sh-sel> abortss+R replacesy’ ‘' doesn’t
PROGRAM Binerv.search(INPUT,OUTPUT)
{This Prodram does a binerv search
on an arrav of characters to find a
"Kev" character inPut by the user,2

76 The Editor

The cursor is positioned behind the first occurrence of the string ine r». Now press (R) and
watch what happens:

4)
*Rpl[d41: <sh-sel> abortssR rerlaces,’ ' doesn’t

PROGRAM Binarv_search(INPUT,DUTPUT)
{This Prodram does a binery_search
on an arravy of characters to find a
"Key" character input by the user.}

VAR done : BOOLEAN;]
Key : CHARS
alpha : ARRAY [1,.26]1 of CHAR]
loorsy torpy midy btm : INTEGERS

BEGIN {Binerv_search}
done:=FALSES btm:=03 top:=2B3} {initializel
FOR loop:=1 TO tor DO alphalloorl:=CHR(loopr+G4d);
WRITELN('Tvrpe uppercase character for a Kev')i
READ(Kevy)35 WRITELNS
WHILE NOT done DO
BEGIN {This is the actual biner» search?}
mid:= ROUND((top + btm)/2)3
IF Key = alphalmidl THEN done:= TRUE
ELSE IF Kev « alphalmidl THEN topi=mid
ELSE btm:i=mid3j
IF top=btm THEN BEGIN

The Editor

The first string i e r» has been replaced with inarv, the cursor is now positioned behind the
second occurrence of the target string and the prompt shows that you can make four more

replacements. Press the space bar (represented by ‘
unchanged and the screen now displays:

’ in the prompt) to leave the string

BEEGIN {Binerv_search?
done:=FALSE} btme=03
FOR
WRITELN(‘TyPre
READ(Kev) 35 WRITELNS
WHILE NOT done DO
BEGIN {This

torP:=261%

is the actual binery

()
*RP1L31: <#sh-sel’ abortssR replacess’ ' doesn’t
PROGRAM Binarv.search(INPUT,»OUTPUT) i
{This Prodram does a binery search
orn an array of characters to find a
"Kev" character inPut by the user.}
VAR done : BOOLEAN;]
kev 1 CHARS
alpha : ARRAY [1.,.261 of CHAR}
loors tors mids btm : INTEGERS

{initializel}
loorp:=1 TO torp DO alrhalloorl:=CHR(loor+G4)3
ueprercase character for a Kev ')}

searchl}

77

78 The Editor

The cursor is now behind the occurrence of Bivie rv following the BEGIN statement. Press
(_R) to replace this one and then press it again to replace the last occurrence of bine rv.

The screen now displays:

4 h
*ERROR: Pattern not found, <space® continues.
PROGRAM Binarv_search(INPUT»OUTPUT) S

{This prodram does a binery search
or an arrav of characters to find a
"Kev" gharacter input by the user.}
VAR done : BOOLEAN;S
kevy : CHARJ
alpha : ARRAY [1.,.2B61 of CHARS
loors torpsy midsy btm : INTEGERS
BEGIN {Binmarv.search?}
done:=FALSE} btm:=03F torP:=2B63 {initialize?
FOR loorp:=1 TO top DO alphalloorpl:=CHR(loor+Bd)3
WRITELN('Tyrpe uppercase character for a Kev’)3
READ(Kev) 3 WRITELNS
WHILE NOT done DO
BEGIN {This is the actual binerv_search?
mid:= ROUND((tor + btm)/2)3
IF key = alephalmid]l THEN done:= TRUE
ELSE IF Key < alrphalmidl THEN top:=mid
ELSE btm:=mid;}
IF top=btm THEN BEGIN
_ J

The prompt at the top of the screen tells you that the Editor could not find any more occurences
of the specified string in the file. The cursor is positioned at the final occurrence of the string but
it has not yet been changed. Press the space bar and the Editor prompt reappears, the final
occurrence of the string gets replaced and the cursor remains at the same place on the screen.

To correct the spelling of bire r¥ (which was intentionally skipped), use the eXchange com-
mand. Move the cursor to the e in birery in the second line of your program. Now press

(X) and the screen shows:

Xohnde: Text +“bs> <sh-sel> aborts <sel acceprts
PROGRAM Binarv_-search(INPUT,QUTPUT) 3
{This prodram does a binery search

of characters to find a
character inPut by the user.?}

on an arrav
"Hevy"

Type the letter a and then press (Select) ((_EXECUTE)). Pressing confirms changes made in

eXchange and returns the Editor prompt. That’s all there is to the eXchange command.

The Editor

You should always position the cursor before initiating eXchange because this command can-
not cross line boundaries; you can only make eXchanges on the line where the cursor is

located.

The eXchange command is handy but the combination of the Insert and Delete commands is
often a more effective way to change text. For example, to clarify the program by adding
comments, position the cursor at the comment following the second BEGIN, press(_ D), and
press once. The screen displays:

(»
»Delete: < » <Moving commands: [<sel’ deletess <sh-sel’
PROGRAM Binarv_search(INPUTOUTPUT)
{This prodram does a binarv search
on an arrav of characters to find a
"Kev" character inPut by the user,}
VAR done : BOOLEAN;
kev 1 CHARS
alrha : ARRAY [1.,.2B1 of CHAR}
loors tops mid, btm : INTEGERS
BEGIN {Binarv_search}
done:=FALSE} btm:=03 top:=261 {initialize}
FOR loop:=1 TO top DO alphalloorl:=CHR(loor+B4) 3
WRITELN(‘Typre uprercase character for a Key’)i
READ(Kev) 3 WRITELN;S
WHILE NOT done DO
BEGIN { the actual bivnary search?
mid:= ROUND((top + btm)/2)3
IF Key = alphalmidl THEN done:= TRUE
ELSE IF Kev < alephalmidl THEN top:=mid
ELSE btmz=mid;
IF top=btm THEN BEGIN
_ Y,

Using a combination of and the space bar, delete everything between the two brackets
and press (Select) ((EXECUTE)). Part of the screen looks like:

WHILE NOT dane DO
BEGIN {1
mid:= ROUND((toP + btm)/2)3

79

80 The Editor

Press (_I_) to initiate the Insert command and notice how a space is opened between the
brackets. Insertions always occur directly in front of the cursor’s position when Insert is initiated.
Now type in the text shown below and then press (Select) ((_EXECUTE)) to complete the insertion.

WHILE NOT done DO
BEGIN {This routine compares Key to
middle. A new toPp or bottom is chosen
and a new middle computed, The looPp
continues until either Key = middle or
the arravy is exhausted.?}
mid:= ROUND((tor + btm)/2)3

Finding Patterns of Text

If you want to find a particular text pattern, you can use the Editor's Find command. This
command is similar to the Replace command in that it begins looking for the pattern that you
specify, beginning at the current cursor location; it also interprets the pattern you specify as a
Token or a Literal, according to the current Token environment parameter setting.

Jump to the beginning of the file by pressing and then . Find the first occurrence of
the word “‘loop” by pressing (_F_) and then typing these characters: /1o0ar/. The /s act as
delimiters for the pattern that you want to find. These delimiters don’t have to be the slash (/)
character; the Find command uses the first character that you specify as the delimiter (except T
while in Literal mode and L while in Token mode), so you will need to follow the pattern with the
same delimiter. For example, you could have specified: "l1oor".

When the pattern is found, the cursor is placed at the beginning of the pattern. You can use
commands to change the text (such as eXchange), or you can search for the next occurrence of
the pattern by pressing (_F_) and then (_S) (for Find Same).

If the pattern is not found, then you are prompted with the message:
*ERROR: Pattern not found. <spacer continues., Press space to answer the
prompt, which puts you back into normal Edit mode.

Formatting Text

The Pascal Editor allows you to format text with the Adjust and Margin commands. Text is also
formatted by inserting or deleting blanks where needed.

The Editor’s Adjust command provides a means of shifting the starting column of a line of text
left or right in the file. This command helps make your Pascal programs and other text more
readable. To increase the clarity of our sample program, move the cursor to the word mi d
following the second BEGIN statement in the program. Press (_A) and the Adjust prompt
appears:

(V *Adjust: Ldust RJust Center <arrow Kevs:> [4sel> to leavel i]

The Editor

Experiment with the Adjust command by pressing(_ L _),(_R),or(_C). These options move
text to the left, right, or center. The values used to shift the text are the Left and Right margins of
the environment (discussed below). Any of the cursor arrow keys as well as and the
cursor wheel can be used to Adjust text. Now return the line to its original position and press
(Select). Repeat factors are available for use with the Adjust command so that many lines of text can be
shifted at one time.

Note

Think twice before using Adjust with large repeat factors. This is because
(‘SHIFT)-(Select) ((SHIFT)-(_EXECUTE)), which usually aborts all changes
made by a command, is not available for exiting the Adjust command.
Therefore, to recover the original format of your text, you would have

to Adjust it again.

Now that the line is in its original place, press (_A) (to initiate Adjust), type 3 (to indent
the text three spaces to the right), and then type & and press (_|). Watch what happens: the
cursor moves down six lines and shifts each line three spaces to the right. Thus, the Adjust

command is useful for indenting entire blocks of text in a Pascal program.

The screen now looks like:

-

_

sAddust: LJust RJust Center <Yarrow Kevys® [<sel’ to leavel

done:=FALSES btm:=0§ torP:=ZG} {initialize}
FOR loop:=1 TO tor DO alrphalloorl:=CHR(loorP+G4d)3;
WRITELN('Type uprercase character for a Kev ‘)3
READ(Kev) 3§ WRITELNS
WHILE NOT done DO
BEGIN {This routine compares Kev to
middle., A new torp or bottom is chosen
and a new middle computed, The loor
continues until either Key = middle or
the array is exhausted,?
mide:= ROUND((top + btm)/Z2)3
IF Key = alphalmid]l THEN done:= TRUE
ELSE IF Key < alphalmidl THEN topi=mid
ELSE btme=mid}
IF top=btm THEN BEGIN
done:=TRUEF mid:i= -13

END 3
END 3
IF mid>0 THEN
WRITELNC('Key -‘sKeys’'- is in position ‘»mid:2)

ELSE WRITELN('Key - ‘sKev s’ - was not found’)3
END.,

_J

Press (Select) ((EXECUTE)) to terminate the Adjust command. If you wish to make adjustments in

other parts of your text file, exit the Adjust command using before moving the cursor from

one area to another. Otherwise you may make unwanted adjustments to your text.

81

82 The Editor

The Margin command lets you margin and fill your text according to a predefined “‘environ-
ment”’. Margin operates on the paragraph where the cursor is located when (_M) is pressed.
A paragraph is any text delimited by any combination of blank lines, lines whose first non-blank
character is the ‘‘command character’ (see the Set environment command in the section
“Editor Commands’’), or the beginning or end of a file. The Margin command is executed
completely by pressing (_M_) ; no parameters or options are available.

Entering the Editor without a workfile or a named file (as you did earlier in this session)
automatically sets (or defaults) the environment to the ‘‘program’’ environment. This environ-
ment is optimized for writing programs. When the Editor is entered with either a file name or a
workfile, the environment associated with that file is the current environment.

You can alter the environment at any time using the Set (Environment) command. Once you
have altered or redefined the environment and saved a text file on a mass storage medium, that
environment is stored along with the text file and is used whenever the Editor is entered with
that file.

Since you entered the Editor without a file, your current environment is the Editor’s “‘program’
environment (the default supplied by the system). The Filling option of this environment is set
to false (which disables the Margin command) so, if you press (_M_) , the screen displays:

*ERROR: Wrondg environment <sPaces continues.

If Filling had been set True (with Auto-indent False), the Margin command would fill and Margin
your program like this:

PROGRAM Bivnarv_search(INPUT,0UTPUT)

search on an arrav
the user.} VAR done

{This
of characters to find a
BOOLEANS Kev CHAR 3

program does a binary
"Kev" character inpPut bv

alrha ARRAY [1..261 of

CHARS loors tors mid:
dorne:=FALSES] btm:=03

alphalloorl:=CHR(loor+B4) 3§
Kev)i READ(Kevy) i WRITELNS
compares Key to middle,
middle computed, The loop
the arrav
alphalmid]l THEN
ELSE btm:=mid3j

END3 IF mid
ELSE WRITELN(‘Key -

btm

dones:=

torP:=261

A new

is exhausted.,} mid:=
TRUE ELSE IF Kev
IF top=btm THEN BEGIN
» 0 THEN WRITELN('Kev -

Cakev s’

INTEGER: BEGIN
{initialize?
WRITELN('Tvre
WHILE NOT

{Bimarvy_searchl}

FOR loorp:=1 TO top DO
upPercase character for a
done DO BEGIN {This routine
top or bottom is chosen and a new
continues until either Kev = middle or
ROUND((toPp + btm)/2)3F IF Key =
alphalmidl THEN top:i=mid
done:=TRUEY mid:= -13 ENDS3
tKey sy '- is in pPosition “smid:2)
- was not found’)§ END.

The previous display gives you some idea of how important it is to know what your environ-
ment settings are before using the Margin command. The only recovery from this operation is to
use a combination of the Adjust and Insert commands to rebuild the text. If you have a copy of
the original file available, you can exit the Editor without updating the file and reenter it with the
old copy.

Note

The Insert command has effects similar to those of the Margin com-
mand when the Filling option of the environment is set to True and
Auto-indent is False. Any time you do an Insert and confirm the
operation by pressing (Select) ((_EXECUTE)), both the inserted text and
all the text that follows the insertion in that same paragraph are
automatically margined.

The Editor

The Margin takes place according to the Left and Right margin settings of the environment. If
you begin an insertion and are not sure of the environment settings, press @-

((SHIFT) -(EXECUTE)) to exit the Insert command. This way, even if Filling is true, your text will not

be margined. Then press (S) (_E) to look at the environment settings.

When writing programs, your use of the environment and the Margin command will probably
be more limited than when writing other kinds of text. To see how the program environment is
configured, press (S) (_E_) (for Set Environment). The screen displays the default environ-

ment:

-

“Environment: {options} <sell or <sPr* leaves
Auto indent True
Filling False
Left mardin 0
Right margin 78

Para mardin 3
Command ch 3
Token def True
Idnore case False

Zap marKers
275 bytes used, 348909 available.

Patterns:
<tardet = ‘inery’y <substi= “inary’

Markers:
TOP FIX

File BINSEARCH.TEXT
Date Created: 10-11-82 Last Used: 10-11-8Z2

N

Press the space bar to exit the environment display and the Editor prompt reappears along with
your text. The cursor is at the position it was when the Set command was entered.

83

84 The Editor

Exiting the Editor and Saving the File

Now that you have finished writing and editing the program, exit the Editor by pressing (_Q)
(for Quit). Make sure that the disc named DOC : is in the same disc drive you have been using.
The screen displays:

()
Quits

Update the workfile and leave

Exit without uepdating

Return to the editor without updating

Write to a file vwame and return

Save as file new file BINSEARCH.TEXT

OQuerwrite as file BINSEARCH.TEXT

Respond by pressing (_§) for Save. If you are on an SRM system, you would use the
Overwrite option. The Overwrite option allows all duplicate links and passwords to a text file to
remain accurate after a file has been modified. More information on these options is given in the
command reference under the Quit command.

“Quits

Writivng.,

Your file is 1009 bkyvtes long,

Exit from or Return to the editor?

Your program text has been written to your disc and is accessible under the name
BINSEARCH . TEXT on the volume DOC:.

If you are creating a file for use with another language system, such as BASIC or HPL, the file
should be stored as an ASCII type file on a disc with a LIF directory. To accomplish that, use the
Wirite option and name the file:

DOC:BINSEARCH.ASC

On a LIF directory, the Pascal system codes all the file names that end in a standard suffix. The
coding scheme removes the period, appends the first character of the suffix to the file name,
and pads the file name to ten characters with ‘" (underscore characters). This allows you to
specify file names up to 15 characters. They are encoded to the maximum ten characters for the
LIF directory. The file system encodes the above file name to:

BINSEARCHA
In this case, the first character of the suffix is the tenth character so no ‘“_" characters were
added. This coding mechanism is invisible as long as you are using the Pascal system. When
you catalogue your disc with other language systems, the coded version of the file name is
observed.

The Editor

Making a Backup Copy
The most direct way to make a backup copy of your file is to press (_R) (to return to the

Editor) and then press (_Q) (to initiate the Quit command). Each time you Quit the editor,
you can make another copy of the file currently in the Editor.

Press(_W) for the Write option, type in a name for your backup copy such as DOC : BINBK P and
press (Return) or (ENTER). If you have another disc handy, replace the DOC : volume with it, specify
the name of the new volume along with a file name and press or (ENTER). Remember the ten
character limit for file names. After pressing (Retum) or (ENTER), the screen displays:

HQuitvs

Writing.,.

Your file is 1008 bvtes longd.

Exit from or Return to the editor?

There are now two identical files on your disc(s) of the binary search program. Now press
(_E) (for the Exit option) and you will be returned to the Main Command Prompt:

(VCummand: Compiler Editor Filer Initialize Librarian Run eXecute VYersion ;‘]

All the Editor commands covered here are explained in further detail in the ‘‘Editor Com-
mands’’ section. Less commonly used commands not presented in this sample session can also
be found there.

85

86 The Editor

A Closer Look

This section contains details about how the Editor works and includes information on the
cursor, the screen, memory and file sizes and how the Editor allocates space for text files on a
storage medium. The section also presents information on using workfiles in the Editor, on
Stream files and on I/O errors that may occur when entering and exiting the Editor.

The Cursor

The cursor (the flashing underline symbol on the screen) is a reference point for all of the
Editor’'s commands. The action associated with most commands occurs at the cursor position.
Commands that perform actions on lines or paragraphs act upon the line or paragraph where
the cursor is currently located.

You have complete control over the cursor through the arrow keys, the and or
keys, the space bar, the mouse, and the cursor wheel (also called the knob). The screen
cursor’s position determines where the Editor will act upon the text, thus reflecting the internal
cursor’s position (in the computer’s memory).

The Anchor

You can also use the Zap command to delete text. With this command, all text between the current
cursor position and the “anchor” is deleted. The anchor is set at the position of the latest Adjust,
Find, Insert, or Replace command. (You can also find the position of the anchor by pressing =.)

If more that a line of text is to be deleted, you will be warned as follows:
*WARNING! Zar more than 80 chars? (v/n) Press(_Y) to confirm the Zap oper-
ation; press (_N_) (or space bar, etc.) to abort the Zap.

The Screen as a Window into a File

Text files are often too large to be shown all at once on the computer’s screen (CRT), so the
Editor uses the screen as a “‘window’” which shows a portion of a file. Depending on which
machine you have, your CRT can display lines of text that are either 49 or 79 characters long
while in the Editor. If a line’s length is greater than your display area, the Editor puts an
exclamation point (!) in the last column to inform you that the entire line is not shown.

The screen is capable of displaying 25 lines of characters at a time. The Editor displays only 23 lines
of text from a file since the top line is reserved for the system’s prompt and the bottom line is
reserved for the “type ahead” line. The type ahead line displays any characters input from the
keyboard which have not yet been processed by the system. One other item is displayed in the
lower right corner of the screen. This is a system status display or “‘runlight.”

The screen generally displays the cursor and the text surrounding it. (The Set environment
command is an exception to this). This means that you can move the window up and down
through your text file by moving the cursor. Whether the text is on or off the screen, it resides in
the computer’s read/write memory and is easily accessed using either the cursor control keys or
the various editing commands which reposition the window. When an Editor command oper-
ates on a portion of text it displays as much of that text as possible on the screen.

The Editor

Memory and File Sizes

When the Editor is entered, the current text file is stored in the computer’s read/write memory.
All changes that occur to a text file (including text creation) take place in this memory and only
become permanent when the Editor is exited and the contents of the text file are written from
memory to a mass storage medium such as a flexible disc.

The maximum size of the text files that can be accessed or created by the Editor depend on the
memory configuration of your system. This size can easily be determined using the Set (environ-
ment) command. The two environment headings, ‘‘bytes used’” and ‘‘available”’, should be

added together. The sum equals the maximum size (in bytes) of the text files which can be
handled by the Editor.

[fyour text file approaches the maximum size while you are doing an insertion, the Editor displays
the following message:

*ERROR: Finish the insertion <space’ continues.

This tells you that you are nearing the Editor’s memory limits. If, after finishing the insertion, you
attempt to initiate the Insert command again, the Editor informs you:

*ERROR: No room to insert. TePacer continues.,

Here is procedure to help you work around the Editor memory limits (whatever they may be on
your machine):

1. Set a marker toward the end of your original file (to be used later).

2. Quit the Editor, Save the original file, and Exit the Editor completely (in order to reenter
with a new file).

3. Reenter the Editor and press (Retum) or (ENTER) (to create a new file).

4. Using the Copy from file command, specify your original file and your marker as
follows: FILENAMELMARK »1 and press (Retum) or (ENTER). The name of your file and
marker will be different; this just shows you the general form. Notice that a second marker
was not specified so that the copy takes place from the marker’s location to the end of the
original file.

. 5. Now, press then (_E) (to Jump to the end of your new file).
6. Press (_1) (to initiate the Insert command).

Now you can continue inserting your text in your new file without too much loss of continuity.
You may want to go back to your original file and delete the text that was copied into your new file
so that it will not exist in both files.

87

88 The Editor

Structure of Text Files

The Editor can read and write three types of files. The predominant file type is TEXT. The
others are DATA and ASCII. TEXT files contain ASCII characters and are structured in a
particular way.

In every text file, the first two blocks (or 1024 bytes) are reserved for information about the
environment settings, the locations of markers in the file and other information the Editor needs
to work with that file. Since the Editor allocates mass storage in two block increments, text files
always contain an even number of blocks. Also, because the Editor reserves the first two blocks
for file information, a file with only a single character will take up 4 blocks of storage space on a
mass medium.

It is possible to create a text file that does not have « TEXT appended to the end of the file
name. If, when exiting the Editor and specifying a file name usingthe Write as ... option,
you place a period (.) at the end of the file name, the Editor will not append « TEXT to the file
name. The file will appear to be a data file on the directory for the mass storage medium. (See
the chapter on the Filer for more details on file types and the directory).

If you want to access this file with the Editor, you must specify the file name followed by a
period when entering the Editor. If you do not use the trailing period, the Editor appends
+ TEXT to the name you type in and looks for a file with that name on the mass storage
medium.

For example, suppose when exiting the Editor you answer the prompt for a file name with
DUX . . Notice the period following the name. The Editor saves the file with the name DUX (it
strips off the period) and does not append the . TEXT suffix. If you enter the Editor and want
that file, you must specify DUX . . If you instead specify DUX (i.e., leave out the period), the
Editor appends « TEXT to the name you typed and looks for a file with the name DUX s TEXT. It
mavy even find a file with that name, but it will be a different file than the one saved by specifying
DUX. .

ASCII files are structured differently. ASCII files on LIF discs are compatible with the BASIC
and HPL language systems that run on your computer. ASCII files are created by writing to a
file whose name ends in the suffix:

+ASC

When writing ASCII files, the Editor’s environment information is lost.

Using Workfiles in the Editor

A workfile in the Editor is used as a ‘‘scratchpad’ version of a text file. The workfile is useful
because it is the default file in the Editor (as well as in many of the Pascal subsystems). Chapter
2 contains information about using workfiles in all the subsystems; only Editor-related workfiles
are covered here.

The Editor

There are two ways to enter the Editor: from the Main Command Level or from the Compiler
subsystem (after the Compiler finds an error in the text file it is compiling). When entering from
the Compiler, the text file being used is automatically read in. When entering the Editor from
the main level, the system automatically looks for a workfile and, if it finds one, reads the
contents of the file into the computer’s memory. If the Editor does not find a workfile, it prompts
you for a file name.

Exiting the Editor (using the Quit command) gives you the option of Updating the workfile. If
the Editor was entered with a workfile (or if the Update option was used earlier in the same
editing session), the Editor writes the contents of the text file in memory to the file called
*WORK . TEXT on the system volume. When you are through with all your editing, it is a good
idea to enter the Filer subsystem and Save the workfile.

Stream Files and the Key

Stream files (covered in Chapter 1) can be created by the Editor to simulate a ‘‘batch’ mode in
which the computer executes the commands in the Stream file as if they were coming from the
keyboard. The key is useful in this regard. It can be used to generate characters which
may not otherwise be attainable by regular keystrokes. For further information on the
key and Stream files, see Chapter 1.

I/0 Errors (Entering and Exiting the Editor)

There are two general types of errors that can occur when entering the Editor. The first type of
error is generated by the system when it cannot find the volume or file which you specified. The
solution to this is to make sure that the proper volume is on-line. This type of error also occurs
when a workfile exists but the Editor cannot find it because the medium containing that file is no
longer on-line. When the Editor encounters this situation, it informs you that the workfile has
been ‘‘lost” and then prompts you for a filename.

The second type of error possible while entering the Editor is a memory overflow condition.
This happens only if the text file being read was created on a machine with more memory than
the machine currently being used. Note that this condition is met if you use the Permanent
command (at the Main Command Level — see Chapter 1) to load something into memory that
was not there when you created the text file. Your machine now has less available memory so
the space for text files is smaller.

When a memory overflow occurs while reading in the file, the Editor lets you continue the entry
process even though the entire file has not been read into memory. However, upon exiting the
Editor, the Save option is no longer available. This safequard keeps you from accidentally
overwriting your original file.

When exiting the Editor, a number of different errors are possible. If the Editor detects an error
while writing the contents of the text in the computer’s memory to a mass storage medium, it
will display a self-explanatory error message.

89

90 The Editor

Editor Commands

This section contains a brief overview and summary of all the Editor commands and a complete
alphabetized description of the syntax and semantics of all the Pascal Editor commands and

options.

Editor Command Summary

Text Modifying Commands
Copy — Insert text from the copy buffer or an
external file in front of the current cursor location.

Delete — Remove text from the current cursor
location to the location of the cursor when

({_EXECUTE J) is pressed.

Insert — Inserts text in front of the current cursor
location.

Replace — Replace the specified target string
with the specified substitute string.

eXchange — Replace the text at the cursor with
text typed from the keyboard, on a
character-by-character basis.

Zap — Delete all text between the anchor and
the current cursor location. (The anchor is set at
the location of the latest Adjust, Find, Insert, or
Replace command.)

Text Formatting Commands
Adjust — Adjust the column in which a line (or
lines) start.

Margin — Format the paragraph the cursor is
located to the margins in the current environment.

Miscellaneous Commands

Quit — Leave the Editor in an orderly manner.
Provides various ways for saving the text currently
in memory.

('sT0P) ((SHIFT)-(CLR 1/0)) — terminates the Editor
subsystem, but the text is lost.

Set — Modify the environment or set markers in
the text.

Verify — Update the displayed text to reflect the
text stored in memory.

Cursor Keys
— Move cursor to next tab position (fixed
tabs) in the current direction.

or (ENTER) — Move cursor in current

direction to the leftmost character in the next
line.

Space Bar — Move cursor one character in the
current direction.

Arrow Keys — Move cursor in the direction
specified by the key.

Cursor Wheel — Moves the cursor like the arrow
keys. Without (_SHIFT), works like right and left
arrows; with (SHIFT J, works like the up and

down arrows.

Cursor Positioning Commands

[E — Typing Gj positions the cursor at

the anchor. (The anchor is set at the location of
the latest Adjust, Find, Insert, or Replace
command.)

Find — Position the cursor after the specified target
string.

Jump — Position the cursor at the beginning, the
end, or the specified marker.

Page — Position the cursor = 23 lines from the
current location.

The Editor 91

Command Syntax and Semantics

The Editor commands are presented in alphabetical order and described in a variety of formats to
make them more useful to you. Each command’s explanation includes: the command’s name, a
brief functional description, a diagram showing its legal syntax, the command’s prompt (if any)
and text which discusses using the command. Each of the command’s options are also covered
and some have examples to show the proper use of these options.

Alphabetical Listing
of Editor Commands

Adjust
Copy
Delete
Equals (=)
Find
Insert
Jump
Margin
Page

Quit
Replace
Set

Verify
eXchange
Zap

92 The Editor

ADJUST

Adjust horizontally shifts the starting column of one or more lines of text.

() (] (Seect) ((EXECUTE))

cursor wheel

(G)—~

Item | Description/Default | Range Restrictions
repeat factor | integer numeric constant | 1 thru 9999

Semantics

The Adjust prompt:

*AdJust: LJust RJust Center “arrow Kevs> [Zexcr to leavel

The Adjust command provides a means of formatting text and enables you to make text more
readable. Adjust uses the line position of the cursor when the command is entered as a starting
point. A line-oriented command, Adjust lets you shift an entire line of text to the left or right
using the (=), (<), ((BACK SPACE), or cursor wheel. Repeat factors can be used with these
keys to shift the text. For example, pressing 7 results in the line of text shifting 7 spaces
to the right.

Pressing(_ A) (for Adjust) and then (L), (R) or(__C) moves the line to the left margin,
right margin or centers the line between the two margins. The margins used by these options
are the Right and Left margins currently set in the environment (see Set command).

Typing a repeat factorand (_ !) or(__| } causes that number of lines to be adjusted the same
amount as the accumulated adjustments at that point. The slash (/) functions as an infinite
repeat factor and can be used with (_1) and (__+). It causes adjustments to be made from
the current line to either the beginning or the end of the text file, respectively. For example,
pressing / causes all the text between the current cursor position and the end of
the file to be Centered according to the current margins.

The Editor

Note

Take care when using large repeat factors or the slash (/) character
when adjusting text. This is because the effects of the Adjust com-
mand cannot be aborted. Whatever adjustments are made become
permanent unless the Adjust command is used again.

Adjust also sets the anchor used by the Zap command. Pressing = (the Equals command)
moves the cursor to the position of the last Adjust unless the anchor has been reset by either a
Find, Insert, or Replace command.

Leave the Adjust command by pressing (Select) ((EXECUTE)). The system stores the adjusted text in
the computer’s memory and the Editor prompt reappears.

93

94 The Editor

COPY

Copy inserts text from a specified file or from the copy buffer.

) Cao) - -

_@ ’ speciffixlceationl \

specification
[(Return) or (ENTER
- () (5) (5P (B }—
Item Description/Default Range Restrictions
volume name literal any valid volume name.
file name literal any valid text file; do not enter . TEXT suffix.
marker literal 1 to 8 ASCII characters excluding CHR (0) thru CHR (31)
and CHR (127).
Semantics

The Copy prompt:
*Copy: Buffer File <sh-sell’

The Copy command provides a way of moving or duplicating text in a file and copying text
from another file. These are the Buffer and File options. Pressing (¢) (for Copy) and (_B)
(for Buffer) results in the contents of the copy buffer being written to your current text at the
cursor position when the command was entered. The screen displays the new text and the
Editor prompt.

The copy buffer is filled with the text involved in the most recent Delete, Insert or Zap command
and its contents are cleared with the Margin command. Margin clears the copy buffer regardless
of the settings in the environment. Doing a Copy (from a File) also clears the copy buffer. A
subsequent Copy from Buffer command generates the message:

*ERROR: Invalid copvy., <“spaces continues.

The Editor

Any subsequent Delete, Insert or Zap refills the buffer (destroying its previous contents) and
copying from a file clears the contents of the buffer. However, doing a Copy (from Buffer) does
not alter the buffer’s contents. Neither do any cursor control movements or commands. There-
fore, you can make multiple copies of the same text in different locations by repeatedly posi-

tioning the cursor and pressing)

To Copy from a file, press (_F_). The screen displays:

*Copvs File [marKersmarKerl 7

The Editor is requesting a volume name, file name, and two marker names. The volume name
may be omitted if the file in question is on the default volume. The volume (specified or default)
must be on-line. Specification of the two previously set markers (see Set command) is optional
but, if given, the marker names must be enclosed in square brackets and separated by a comma.
Remember, only TEXT type files have markers.

If markers are specified, only the text between those two markers is copied. If no markers are
specified, the entire file is copied. Only one marker has to be specified. If it is the first marker (i.e.,
followed by a comma), the text is copied from the marker position to the end of the specified file.
If only the second marker is given (i.e., preceded by a comma), the text is copied from the
beginning of the specifed file to the position of the marker. The copy occurs at the cursor’s
position when the Copy command was entered. You can exit the command before all specifica-

tions are complete by pressing (SHIFT) -(Select).

After typing the appropriate information and pressing (Retum) or (ENTER), the Editor displays:

Corvyaeas

This shows that the specified text is being copied into your current text. When the operation is
complete, the Editor prompt reappears and the screen displays all or part of the text that was
copied.

95

96 The Editor

DELETE

Delete removes text from the current file.

{ _]

(o)

(oelect) ((CEXECUTE))

—
factor
Delete char (st)-(Selct) (SHIFT) -(EXECUTE)
u or
) (Delete fine)

QP90

[

spacebar

cursor wheel

Item | Description/Default | Range Restrictions

repeat factor integer numeric constant 1 thru 9999
(1 thru 4095 for TAB)

Semantics

The Delete prompt:

*Deletes 4 » <Mowing commands: [<exc: deletes: <sh-exc> aborts]

The Delete command enables you to remove text and fills the copy buffer with the deleted text.
Delete uses the cursor position when the command is entered as a starting point. Subsequent
cursor movement by any cursor control key causes text to be removed between this point and
the new cursor position. Text can be recovered by moving the cursor back toward the starting
point.

The Editor

Direction applies in the Delete command and is shown by () (forward) or (<) (backward) in the
Delete prompt. If forward, movement occurs from the cursor toward the end of the file; if
backwards, movement is from the cursor toward the beginning of the file. Movement generated
with the (_TAB), (Return) or (ENTER), and space bar takes place in the direction shown. Direction can

be changed while in the Delete command by pressing * . or + (for forward) or < + or - (for
backward).

Repeat factors are available within the Delete command. For example, pressing (_ D) (for
Delete) and then 8 ENTER) will remove 9 lines of text in the current direction starting at the
cursor position.

Delete fills the copy buffer with the deleted text and thus provides a means of moving or
duplicating text. See the example in the section ‘A Sample Editor Session”’.

To exit the Delete command press (Select) ((_EXECUTE)) or (SHIFT) -(Select) ((SHIFT) -(EXECUTE)). (Select)
confirms the deletion, returns the Editor prompt and displays the cursor at its position when
was pressed. (SHIFT) -(Select) aborts all changes made since Delete was entered, returns the Editor
prompt and displays the cursor at its position when Delete was entered.

Note that the copy buffer is filled by whatever is deleted; whether the command is exited with a
or -(Select) makes no difference to the copy buffer.

97

98 The Editor

EQUALS (=)

EQUALS positions the cursor at the anchor’s location.

@—H

Semantics

The equals sign (=) is a cursor positioning command. It moves the cursor to the beginning of
the most recent item Adjusted, Found, Inserted, or Replaced. Pressing = causes the cursor to
jump to the location of this ““anchor’” and the Editor’s prompt is displayed. This is the anchor
used by the Zap command.

The Editor

FIND

Find moves the cursor to an occurrence of a specified string.

LII delimiter H ::ﬁgﬁ delimiter

Item Description/Default Range Restrictions

repeat factor | integer numeric constant | 1 thru 9999

delimiter literal (see glossary) any valid delimiter; must be used in matched pairs.
target string literal 1 thru 128 characters
Semantics

The Find prompt:

“Find[11: L <tardets
or *FindC1l: T <target:

The prompt displayed depends on whether the “Token” definition in the Editor’s environment
is set to true or false. If set to true, the first prompt is displayed; if false, the second is shown.
These are explained below.

In its simplest form, the Find command is executed by pressing (_F_) and specifying a string
surrounded by delimiters. Upon typing the final delimiter, the cursor is positioned at the end of
the first occurrence of the specified string in the current direction.

The Find command moves the cursor and sets the anchor (used by Zap) at the location of the
target string. In this context, a ‘‘string’’ is a contiguous series of non-control ASCII characters
surrounded by delimiters. Delimiters are separators that signify to the Editor the beginning and
end of the string such as the characters / ‘ + and * (more are listed in the glossary).

Avoid using a delimiter that appears in your string. Delimiters must be matched pairs; if you use
$ to signify the beginning of a string, you must use % to signify the end of the string. The
maximum length of a target string is 128 characters.

The Find prompt shows the current direction. When searching for a string occurence, Find
looks for that string between the cursor position when the command was entered and either the
end of the file (if direction is forward) or the beginning of the file (if direction is backward +).

99

100 The Editor

Repeat factors are available with the Find command but must be typed before the Find
command is initiated. If a repeat factor is used, the Editor positions the cursor at the end of that
occurrence of the string. For example, typing 8 (_F) /the/ results in the cursor being
positioned at the end of the eighth occurrence of the. The slash (/) operates in a similar way
but signifies the last occurrence of the specified string in the current direction. If no repeat factor
or slash character is specified it defaults to the value 1 and the Editor attempts to find the first
string occurrence. The Find prompt displays this value in square brackets.

After pressing (_F), the prompt on your screen contains either an L or T for “literal” or
“token’” modes. Literal and token are interdependent; if one option is shown as available, the
other is automatically the default. If L is shown in the prompt and you want to use the token
search mode, simply type in the target string surrounded by delimiters. The search will take
place in the default mode (in this case, token). To do the same search in the literal mode, press
(L) then type in the string as before. The Find command then searches for a literal form of
the string.

A literal string is exactly that — a literal string of characters either isolated or imbedded in a
word or paragraph. A token string is one which is isolated by delimiters. Delimiters in this
context are any ASCII characters except numbers or alphabetic characters. Blanks are common
delimiters in English text because they separate words.

To illustrate literal and token searches, the following example assumes the direction is forward
() with the cursor located at or before the start of the sentence shown. In the sentence
That’s m» hat!, atoken search for hat moves the cursor behind the last word h at in the
sentence whereas a literal search for hat moves the cursor behind the hat imbedded in
That 's.

The “‘same” option is another feature of the Find Command. Same refers to the most recent
target string used in either the Find or Replace command. Suppose you typed the sequence
(CfF) *dalactic#*. After pressing the final delimiter (*), the Editor moves the cursor
behind the first literal occurrence of the target string dalactic. Then typing (F)
(Us) results in the cursor moving behind the next literal occurrence of the same target.

When using the ‘‘same’” option with the direction set backward (%), use a repeat factor of two
before initiating the Find. Otherwise, the Editor finds the previous occurrence since it searches

between the cursor’s current position and the beginning of the file.

Suppose after the first Find your screen displays:

“BEdit: Adist Cepy Dlete Find Insrt Jmp Relace Ouit Xchnd Zap 7

According to the dalactic archivess the
interdalactic_cruisers continued their
explorations without redgard for

The Editor

Ifyoupress(_F) (L) (_S) toFind the same literal string, the cursor position on the screen
does not change. To find the next occurrence, type 2 thenpress(F J (L) (_S). Since the
direction is backwards and the Find command always positions the cursor behind the target
string, using a repeat factor of 2 skips to the next effective occurrence of the literal salactic.
Repeated searches in the forward (>) direction operate in a straightforward manner.

Note
If a Replace has been done since the last Find operation, the target
string used by the “same’ option is now the target specified in the
Replace command.

Searches are sensitive to the case of the characters (upper and lower case) unless Ignore case and
Token are set to True in the Environment. Type(_$) and(__E) to Set the Environment. Type
(I Jand(_T) tosetlgnore caseto True. Type and if Token is not already True.
After these two conditions are met, the Editor treats both the target string and each token string as
uppercase.

Find is one of the commands that sets the anchor used in the Zap command and accessed by the
Equals command.

(SHIFT) -(Select) ((SHIFT) -(EXECUTE)) can be used to abort the Find command before all specifica-
tions are complete. If -(select) is used, the target pattern used by the “‘same’” option remains
unchanged. cannot be used with the Find command. The command is executed immediately
when the final delimiter (or (_§) if “‘same” is used) is typed.

101

102 The Editor

INSERT

Insert opens a window in the current file for the subsequent insertion of text.

>] (Goeect) (CERECUTE)

non-centrol
IASCII z:har‘z—.u:ter*}_J
(CShit)-(seect) ((SHFT) -(EXECUTE))

Tab

Insert line

cursor wheel

or (ENTER

spacebar

il

Item I Description/Default | Range Restrictions
non-control literal Any valid ASCII character excluding: CHR (0) thru CHR
ASCII character {31) and CHR (127).
Semantics
The Insert prompt:
sInsert: Text <hsky <clr In* [<sel> accerts, <sh-sel: escares]

The Insert command opens a window in the text file directly in front of the cursor position for
text creation. When initiated (by pressing (_ |] or (_INS CHR]} or (INS LN)), the text from the
cursor to the right edge of the screen is shifted to the right. Insertion always takes place directly
in front of the cursor location when Insert was entered. Any sequence of non-control ASCII
characters may be inserted and any cursor control key may be used. However, unless the
movement generated by the cursor control keys is backward, they produce question marks (?)
in the text. You can to delete a character or press to delete the most
recently inserted line. is available only after a line of text has been inserted. Back-
spacing past the point at which Insert was entered is not possible.

The Editor

The way in which text insertion takes place depends on flags or parameters set in the Editor’s
environment. These flags have default values supplied by the Editor but can be changed with the
Set command. The ones that concern you here are Filling and Auto indent. These two options
generally have opposite values. Most of what you need to know about Fillingand Auto indent can
be summed up in one sentence: If you are writing program source text, set Filling to false and
Auto indent to true; if writing regular text, set Filling to true and Auto indent to false.

Filling, when set true, performs both “‘wrap around’’ and ‘‘margining’’ functions. As inserted text
approaches the Right margin (another environment option), the Editor attempts to fit the words
on the current line. If a word would cause the line to extend beyond the right margin, it is
automatically shifted to the next line (i.e., the system supplies a carriage return and a line feed).
When the insertion is completed by pressing (Select) ((EXECUTE)), all text following the cursor in the
current paragraph is margined. Margining adjusts the text to fit between the environment’s
margins and also compresses blanks in the text. You can have two blanks following the four
characters: * . : !. All other blanks are compressed into a single blank character.

Note that the Editor’s definition of a paragraph is ANY text delimited by any combination of
blank lines, lines having the Command character as the first non-blank character in a line, or the
beginning and end of a text file. The Command character is yet another of the environment’s
options; see the Set command for more details.

Note

As the definition of a paragraph infers, the Editor does not disting-
uish tables from other kinds of text material. Any insertions within a
table will result in the table being margined (i.e., collapsed) if Filling
is set to true and the insertion is exited with (Select) ((EXECUTE)). Use
the Set command to set Filling to False before inserting in a table or

list. ((_SHIFT - will NOT restore the text to its original state after a

paragraph has been margined).

If Filling is false, a beep is generated as you approach the end of the line, signaling you to press
(Return) or (ENTER) the same way a bell on a typewriter does. If you continue to insert text past the
last visible column on your screen, the Editor accepts the characters and shows you that they are
outside of the display area by placing an exclamation point (!) in the final column. To access these
characters, complete the insertion by pressing (Select) ((EXECUTE)), position the cursor before the
last word on the line and press (1) followed by (Retum) or (ENTER) to insert a carriage return.

103

104 The Editor

If Auto indent is true, pressing (Retum) or (ENTER) automatically places the cursor in the same
starting column as the previous line. When Auto indent is false, the cursor is positioned according
to either the Left or Paragraph margin in the environment.

If Insert is exited with (Select) ((EXECUTE)) (and Filling is true and Auto indent false), all text
following the insertion in the same paragraph is margined according to the Right, Left and
Paragraph margin values in the environment. Also, the entire insertion is stored in the copy buffer
so you can copy the same text elsewhere if you wish. If Insert is exited with (SHIFT)-(Select)
(regardless of the options set), all changes are aborted and the text and cursor appear as they did
when the command was entered.

The Insert command sets the anchor (used by the Zap command) at the position where Insert was
initiated. The anchor is set regardless of whether (Select) or (SHIFT)-(Select) is used to exit the
command.

The Editor

JUMP

The Jump command repositions the cursor.

(Retum) or (ENTER)

(c
(0) (- (B)—

000

Item | Description l Range Restrictions
marker literal 1 to 8 ASCII characters excluding: CHR (0) thru CHR (31) and
CHR (127).
Semantics
The Jump prompt:

*JUMP: Begin End MarKer <sh-sel>

The Jump command moves the cursor to the beginning or end of a text file or to a previously
defined marker. The command has no other effects; it merely repositions the cursor. To Jump

to the beginning of your file, press (_J_) . To Jump to the end of your file, press (_J)
Ce).

You can also Jump to a marker by pressing (_M_) and typing the name of any previously
set marker in the file followed by (Return) or (ENTER). Marker names are defined with the Set
command. A legal marker name is any sequence of up to eight non-control ASCII characters
(control characters are deleted by the system). They can actually be longer than this but the
Editor only pays attention to the first 8 and truncates the rest.

Also, marker names are not case sensitive. The Editor converts all marker names to uppercase
letters so they can be typed using any desired combination of uppercase and lowercase letters.
There is a 10 marker limit per text file. See the Set command for more information on markers.

105

106 The Editor

MARGIN

Margin formats all text in the current paragraph to fit the margins set in the environment.

@

Semantics

Margin is disabled and the system generates an error message unless the environment’s Auto
indent is false and Filling is true when the command is executed.

The Margin command provides a means of formatting paragraphs in your file. A paragraph is
defined by the Editor to be ANY text delimited by any combination of blank lines, lines having
the Command character as the first non-blank character in a line, or the beginning and end of a
text file. See the Set command for details on the Command character.

Upon initiating Margin (by pressing (_M_)), the Editor takes all the text in the current para-
graph (the one where the cursor is) and forces it to fit within the Left, Right and Paragraph
margin boundaries of the environment. After margining, the first line of the paragraph begins at
the column specified by the Paragraph margin setting and the rest of the text conforms to the
Left and Right margin settings. If a word would exceed the Right margin it is “‘wrapped around”’
to the next line.

Two blanks are allowed following the four characters: 7 « : !. All other blanks are compressed
into a single blank character.

Since the Command character in the environment delimits a paragraph, you may want to use it
as the first character in each line of tables or lists which you do not want margined. See the Set
command for more information on the Command character.

Note
If a table or list fits the definition of a paragraph, the Margin command
will definitely margin that text. Exiting the Insert command with
(‘select) ({(_EXECUTE)) also uses some of the Margin routine so be aware
that these commands can potentially ‘‘collapse’ a table or list.

The Margin command has no parameters and its effects cannot be aborted. When writing
program text or tables, it is advised that Auto indent be set true, Filling be set false and the
Paragraph margin be equal to the Left margin.

Note

The Margin command clears the contents of the copy buffer regard-
less of the settings of the Auto indent and Filling options.

The Editor 107

PAGE

Page moves the cursor one or more pages (23 lines) in the current direction.

b —T ™
repeat
' factor '

PRPPPY)

Item | Description/Default | Range Restrictions
repeat factor | integer numeric constant | 1 thru 1000
Semantics

The Page command lets you move rapidly through a text file by repositioning the cursor one or
more pages (23 lines of text) forward (») or backward () in a file. Page is executed by pressing
(P) and its movement occurs relative to the position of the cursor. Page moves the cursor in
the direction displayed by the Editor prompt when the command is entered. The direction can
be changed by pressing » + or + for forward or < s or - for backward.

Repeat factors are available in the Page command. For example, to move the cursor 3
“screens’” or pages in the file, press 3 (_P_). The slash character (/) can be used in place of an
integer repeat factor. Pressing / (_P_) results in the cursor moving to the end of the file (if
direction is) or the beginning of the file (if direction is <). If neither repeat factor nor slash is
specified, the default is 1 and the cursor moves one page.

(Select) ((EXECUTE)) and (SHIFT) -(Select) ((SHIFT) -(EXECUTE)) are not available in the Page command.
The command is immediately executed when (__P_) is pressed.

108 The Editor

QUIT
QUIT leaves the Editor with various exit options.

@ae

@G NG

00

Semantics
Quit:

Urpdate the workfile and leave
Exit without updating
Return to the editor without urdating
Write to a file nmame and return
Save as file new file BINSEARCH.TEKT
OQuerwrite as file BINSEARCH.TEXT

The Quit command allows you to exit the Editor and store your file on a mass storage medium.
The last two quit options shown above are only available if the file existed before the editing
session.

Quitis initiated by pressing(__ Q) from the Editor’s prompt. Choose any of the options displayed
by pressing the first letter of the option.

Pressing (_U_) (for Update) results in the contents of the text in the computer’s memory being
written to a text file on the system volume under the name WORK » TEXT. This workfile may or
may not be associated with another file name (see the Get and Save commands in the Filer
chapter). After writing the file, the system reports the file’s size (in number of bytes and blocks)
and displays the main command prompt.

Pressing (_E) (for Exit) either immediately exits to the main level or displays:

Are vou sure you want to exit without uepdating?
Tvre Yes to Exit without update
Tvee Nao to Return to Editor

This message is displayed only if changes have been made to the text file in the current editing
session. If no changes have been made, the system immediately goes to the main level when

(_E) is pressed. It also exits to the main level if you respond by pressing (Y). Responding
with (_N_) returns you to the Editor.

The Editor 109

Pressing(_R_) (for Return) returns you to Edit mode with the cursor located where it was when
Quit was entered.

Pressing (_W) (for Write) causes the system to prompt you for a file name. A complete file
name is needed. If a volume ID is not given, the default volume is used. The volume PRINTER:
may be specified. This results in the file being listed to the printer.

If you use the Write option and the file already exists, the Editor displays this prompt:

AQuit:

FILE.TEXKT exists ++.
Rewrite then Purde old
OJuerwrite
Purde old then rewrite
Nene of the abouve

Rewrite then purge old is like the Save command. An attempt is made to write the new file before
purging the old.

Overwrite removes the original file and then attempts to write the new version in its place. On
SRM units, duplicate links and passwords will be preserved. On a disc, the file may not fit if the
new version is larger than the old.

Purge old then rewrite removes the original file and then attemps to write the new file in the
biggest space on the disc. This alternative gives you the best chance that there will be room for the
new file.

Whether you *‘Overwrite”” or ‘‘Purge old then rewrite”, the original copy of the file is gone and
the only copy of the file is in the Editor's memory. It is advisable to save it on another disc as soon
as possible.

None of the above returns you to the Editor. You may Quit again and write the file with a different
name.

Pressing (_S) (for Save) results in the file being written to the original volume and file.

If you try to Save a file and you get the message:

“ERROR: No room on vol <spaces continues.

Press the spacebar to continue. You could put in another disc with enough space, then Quit and
Save it on the new disc. Alternatively, you can Quit and Overwrite the file.

Pressing (0) (for Overwrite) is designed for SRM systems. The Overwrite option allows all
duplicate links and passwords to remain accurate. On a disc, Overwrite may not work if the file
has been enlarged. If this happens, press the spacebar to continue, Quit and Save again. The
previous Overwrite removed the original file. Now the Save will try to save the file in the largest
space on the disc. If this does not work, you must put the file on another disc.

110 The Editor

REPLACE

Replace does one or more substitutions of a specified string for another string.

-j_“\

delimiter }_..t
string

arget

H delimiter

Item

——®

substitute
string

H delimiter

7_[.‘ delimiter l_..[

Description/Default

Range Restrictions

repeat factor

integer numeric constant

1 thru 9999

delimiter literal (see glossary) any valid delimiter; must be used in matched pairs.
target string literal 1 thru 128 characters
substitute string literal 1 thru 128 characters
Semantics
The Replace prompt:
*Repllil: L W <tardrisubl
or *Repl[11: T V¥ <tardrisubr

The prompt displayed depends on whether the “Token’ definition in the Editor’s environment
is set to true or false. If true, the first prompt is displayed; if false, the second is shown. These are
explained below.

The Replace command allows you to substitute one string for another in your text file. The
anchor (used by the Zap command and accessed by the Equals command) is set at the location
of the replacement. Replacements can be done to a single, all, or only certain occurrences of a
string.

In its simplest form, the Replace command is executed by pressing (_R_) and specifying two
strings — a target and substitute — each surrounded by delimiters. The target and substitute
strings may be different sizes. Upon typing the final delimiter, the first occurrence of the target
string is replaced by the substitute string and the cursor is positioned at the end of the substitu-
tion.

A target string (the one that you want replaced) must be supplied. A string is a contiguous
series of non-control ASCII characters surrounded by delimiters. Delimiters signify the begin-
ning and end of a string and are characters such as: / ‘ + and * (more are listed in the
glossary).

The Editor

A substitute string (what you want the target string changed to) must also be supplied with
delimiters. The substitute may be an empty (null) string.

Avoid using a delimiter that appears within your string. Delimiters must be matched pairs, i.e., if
you use $ to signify the beginning of a string, you must use % to signify its end. The substitute
string can have a different set of delimiters than the target string and the two strings may be of
different sizes. The maximum length of either string is 128 characters.

After pressing (_R_), the prompt on your screen contains either an or for

“literal” or ‘‘token’’ modes. Literal and token are interdependent; if one option is shown as
available, the other is automatically the default. If is shown in the prompt and you want
to use the token search mode, then type in the two strings and their delimiters. The replacement
takes place in the default mode, in this case, token. To do the same replacement in the literal
mode, press and type in both strings as before. The Replace command then searches for
a literal form of the string.

A literal string is exactly that — a literal string of characters either isolated or imbedded in a
word. A token string is usually a word (a string isolated by delimiters). Delimiters, in this
context, are any ASCII characters except numbers or alphabetic characters — they do not have
to be matched pairs. Blanks are the most common delimiters in English text because they
separate words.

To illustrate literal and token replacements, the following example assumes the direction is
forward () with the cursor located at or before the start of the sample sentence. In the sentence
That’s m» hat!, atoken replacement for hat with umb rel1la replaces the last word hat
in the sentence with umb re 1 1 a whereas a literal replacement would substitute umb re 11 a for
the hat imbeddedin That ‘s (resultingin Tumbrella’s m» hat!).

Direction applies in the Replace command and is shown by the first character in the com-
mand’s prompt. If the direction is forward (*), the replacement occurs between the cursor
position and the end of the file; if backward (), between the cursor and the beginning of the
file.

Repeat factors are available for the Replace command but must be typed before the command
is initiated (before (_R_) is pressed). A repeat factor causes that number of substitutions to be
made. If not specified, the repeat factor defaults to 1. A slash character (/) may also be used to
change all occurrences of the specified string in the current direction. The repeat factor (or slash
character) is displayed in brackets [1 in the command’s prompt. The repeat factor works
differently when the Verify option is used.

The Verify option lets you choose whether or not to make a particular replacement. The
combination of a repeat factor with Verify allows you to replace only certain occurences of a
string in the file. For example, after pressing 2 (_R) (_V) and typing in the target and
substitute strings, the Editor moves the cursor to the first occurrence of the target string and
prompts:

*Repll2]: <sh-excr aborts:R rerplacess’ ‘ doesn’t

111

112 The Editor

To confirm the replacement, press (R). To skip to the next replacement (if any), press the
space bar. While using Verify, pressing (SHIFT) -(Select) ((SHIFT)-(_EXECUTE)) aborts the operation
and retains all replacements made up to that time.

The “‘same” option is available with Replace and refers to either the most recent target string
(used in a Find or Replace) or the most recent substitute string (used only in Replace). Which
string it signifies (target or substitute) depends on where it is used in the Replace command. To
use “Same”, simply press (_S_) in place of the delimited string. If you type (_§) followed by
a delimited string, the most recent target is replaced with the specified string. If you type a
delimited string followed by (_S), the specified target is replaced with the last substitute. Both
strings may be specified by typing (§) (S). The current assignments of the ‘‘same’
patterns can be seen by pressing (S) (_E) (see the Set command for more details).

Note
If a Find has been done since the last Replace, the target string used
by the ‘“‘same’’ option is now the target specified in the Find com-
mand.

The “Ignore case” option applies to the Replace command. Type (S) and(_E) to Set the
Environment. Type (| Jand(_T) tosetlgnore caseto True. Type and if Token
is not already True. The target string and all token strings in the text are treated as upper case.
When a match is found, the token string is replaced with the substitute string. The case of the
substitute string is not affected by the Ignore case option.

The Replace command can be aborted before all specifications are complete by pressing
(CSHIFT) -(Select) (((SHIFT)-(EXECUTE)). (Subsequent use of the ‘‘same’” option after aborting the
Replace command may give you unwelcome results).

The Editor

SET

Set defines markers and alters the environment in which your text operations occur.

marker

(Retum) or (ENTER)

&

margin
integer

spacebar

or

'().

F"

spacebar

non-control

ASCII character }'—__—.
J

o

- (o) (o) (o) (o)) —
Item Description/Default Range Restrictions Recommended Range
marker literal 1 to 8 ASCII characters -

margin integer

non-control ASCII
character

Semantics
The Set prompt:

*Set: Enuv Mrk

integer numeric constant

literal

Prosg Doc

ssh-sel>

excluding CHR(0) thru
CHR(31) and CHR(127)

0 thru 9999; left margin
must be less than right
margin

any valid ASCII
character excluding
CHR(0) thru CHR(31)
and CHR(127)

0 thru 49 for
50-column displays; 0
thru 79 for 80-column

displays

114 The Editor

Set lets you define markers and various environment parmeters. Markers are Set by moving the
cursor to where you want the marker, pressing (_ §) (_M_) (for Set Marker) and typing in a
marker name followed by (Retum) or (ENTER). A marker name is any sequence of up to eight
non-control ASCII characters. The Editor accepts more than eight characters but truncates
anything longer. All non- printing characters (those with an ASCII value of either 127 or in the
range of 0 to 31) are deleted by the system. The Editor converts these names to uppercase so they
can be typed in whatever form is convenient.

No more than ten markers can be set in a file. If you attempt to set more than ten, the Editor
displays the markers in a numbered list and prompts you for the number of the marker you wish
to replace. All markers can be removed by giving the Zap marker command. Markers are used
with the Jump and Copy commands and their names are shown in the environment display. The
locations of the markers are not shown so the use of meaningful marker names is advised.

Pressing(_S) (CE) (for Set Environment) displays the current environment and allows you to
change the environment’s parameters. When entering the Editor with a new file, the default
environment is the Program environment which looks like:

*Envvironment: {orptions} <sel> or <sp> leaves
Auto indent True
Filling False

Left margin 0
Ridght margin 78

Para mardin 3
Command ch y
Token def True
Idnore case False

Zap markers
273 bytes useds 348909 available,

Patterns:
“tardetr= ‘inery’y <subgtr= ‘inary’

Markers:
TOP FIX

File BINSEARCH.TEXT
Date Created: 10-11-82 lLast Used: 10-11-B2

\— .

Patterns and Markers are only shown if they have been set. The heading near the bottom displays
a file name if the Editor is entered with a specified file. Whenever a file is saved on a mass storage
medium, the current environment is saved with it and becomes the default environment when
that file is used by the Editor.

The Editor

The environment also displays how many bytes of memory have been used and how many are
still available for use in the Editor. The total number of bytes (used and available) depends on the
amount of memory in your machine.

To change a parameter in the environment, press the first letter in the parameter’s name. The
cursor is automatically positioned at the item to be changed and the new value must be typed. If
the parameter needs a number (as in Left, Right and Paragraph margins), then the number must
be followed by pressing (Return) or (ENTER) or the space bar. All other parameters accept a single
character and return the cursor to the environment’s prompt as soon as the character key is
pressed.

Automatic indenting is a boolean (with either a true or false value) which affects the Insert and
Margin commands. When inserting text with this item set true, pressing (Retun) or (ENTER) auto-
matically moves the cursor to the next line at the same starting column as the previous line. This
indenting feature is useful when writing Pascal programs so it is set true for the Program (default)
environment.

When Auto indent is true the Margin command is disabled. When Auto indent is false, pressing
(Return) or (ENTER) places the cursor on the next line at either the Left margin or Paragraph margin
(as currently defined in the environment).

Filling is another boolean value which affects the Insert and Margin commands. It usually has a
value opposite that of Auto indent. When set true (and auto-indent is false), filling causes
automatic ‘‘wrap around’’ of text. If a word is too long to fit on the current line (as defined by the
Right margin value), it is carried or wrapped around to the nextline and no carriage return (
or (ENTER)) is necessary. Another effect of this parameter being set true is that an Insert completed
by pressing (Select) ((EXECUTE)) causes all text following the insertion in that paragraph to be
margined or filled according to the current values of the Left, Right and Paragraph margin
settings. All blanks in the text are then compressed to a single blank (though two blanks are
allowed following the characters: ? . ! :). The Margin command only works when Filling is set true
and Auto indent is set false.

With Filling set false, the wrap around and margining functions are disabled. When approaching
the end of a line, the system generates a ‘‘beep’’ to inform you that you need to press or
to go to the next line. If you type past the display area of the screen, an exclamation point
(1) is shown in the last column. The text, though not visible, is maintained in the computer’s
memory.

The Left margin may be set to any integer between 0 and 9999. Numbers longer than 4 digits are
truncated by the system. The Left margin must be less than the Right margin setting or an error
message is generated when you attempt to exit the environment.

The Right margin setting has the same numerical limitations as the Left margin. Unless you have
a particular reason for doing so (like making full use of a 132 column printer), it is not a good idea
to set this margin beyond the right column display limits of your screen because the text will not
be visible.

115

116 The Editor

The Paragraph margin can be set to any positive integer up to 4 digits. This setting determines
the indention that the first line in each ‘‘paragraph’’ will get. This occurs when Filling is set false
(while inserting text) or when Margin is used. Note that a paragraph as defined by the Editoris any
text surrounded by blank lines or by lines beginning with the Command character (discussed
below). The beginning and end of a file will also delimit paragraphs.

The Command character can be any non-control ASCII character. If this character is the first
non-blank character in a line, the Margin command treats the line as if it were blank. The line is
not margined and it is considered to be the beginning or the end of a paragraph. The default
Command character is the (") character.

Token is a boolean used by the Find and Replace commands. When Token is set true, the default
value for Find or Replace becomes token and the command’s prompt displays the literal option.
(Token and literal refer to the type of target string searches that take place in these commands).
Conversely, if Token is false, the default value for Find and Replace is literal and the command’s
prompt displays token as an option.

The Ignore case command affects searches in the Find and Replace commands. If “‘Ignore case”
is left as False, then “‘string”’ and ““STRING’ and “‘String”’ are not treated as equal. If ‘‘Ignore
case’’ is set to True, they are treated as equal. This only works when the Environment’s Token
mode is True or if you type a *‘T"" before typing the target string.

The Zap markers command removes all markers from the file.
The environment display is left and the Editor’s main prompt returned by pressing or

(ENTER), (Select) ((_EXECUTE)), or the space bar. The current environment settings are automatically
saved with your file when the text is written to a disc or other mass storage medium.

Although there is only a single environment associated with a text file, the environment may be
set to one of two predefined configurations: the Program environment (by pressing (5§)
(CP)) and the Document environment (by pressing (S) (_D_)). These configurations
optimize the various environment parameters for writing programs or regular (non-program and
non-tabular) text, respectively. When either predefined environment is Set, the current environ-
ment is displayed and any of its parameters can be changed. If you want to change just one or two
parameters, use @ [I) to get into the existing environment.

Changes made to the environment cannot be aborted but the parameters may be changed as
many times as desired.

The Editor 117

VERIFY

Verity refreshes the screen display from memory.

Semantics

The Verify command has no options; it is executed immediately by pressing (_V_). Verify
causes the Editor to refresh or update the current screen display from memory, move the
current line (the one where the cursor is) to the middle of the screen, and display the Editor

prompt. If the cursor is located in the first 23 lines of text when Verify is used, the line containing
the cursor is not moved.

118 The Editor

eXchange

eXchange replaces text character for character at the cursor position.

1

(Select) ((CEXECUTE))

@t

Lans

non-control
ASCII character
cursor wheel

(Backspace)

Tab

spacebar

——(epacenar)—
)
O

. l@\ J

ot)-(seleet) ((CSHIFT) -(EXECUTE))

Item Description/Default Range Restrictions
non-control literal any valid ASCII character excluding: CHR (0) thru CHR
ASCII character (31) and CHR (127).

The Editor

Semantics
The eXchange prompt:

*Mchnde: Text «<bsr <sh-sel> aborts <sel> accepPts

The eXchange command lets you exchange the text in a line on a character-for-character basis,
beginning at the cursor position. Typing a character overwrites the character at the current cursor
position and moves the cursor to the next character to the right. Using the horizontal cursor-
positioning keys is also allowed: backspacing (such as with (Backspace) (4), or cursor wheel)
moves the cursor backwards and restores the original character; forwardspacing moves the
cursor over the existing characters without changing them.

The exchange command operates only on the current line (i.e., the line where the cursor is
located when the command is entered). Attempting to move the cursor vertically will generate
question marks that overwrite the existing characters. Backspacing past the point at which
eXchange was entered is not allowed.

Almost any ASCII character can be used in eXchange; however, use of control characters is not
advised. Carriage returns cannot be entered, since you are not allowed to cross line boundaries
while in the eXchange mode. Direction and repeat factors do not apply to this command.

eXchange is initiated by pressing (_X) and is exited by pressing (Select) ((EXECUTE)) or (SHIFT)-
(Select) ((_SHIFT) -(_EXECUTE)). (Select) confirms the exchanges, returns the Editor prompt, and dis-
plays the cursor at its position when was pressed. -(Select) returns the copy of the text
file in the computer’s memory to its state before eXchange was entered, displays the Editor
prompt and shows the cursor at its position when eXchange was entered.

119

120 The Editor

Zap

Zap deletes text and fills the copy buffer with the deleted text.

(&~

Semantics

The Zap command has no options; it is executed immediately by pressing (_Z). Zap deletes
all text between the ‘“‘anchor’’ and the current cursor position and stores it in the copy buffer.
The anchor is located at the position in the text where the most recent Adjust, Find, Insert or
Replace command was executed. (You can confirm the position of the anchor with the Equals
command, which moves the cursor to the anchor).

If more than 80 characters are going to be Zapped, the Editor displays a prompt asking if you
wish to Zap anyway. Also, if the Copy bulffer is not large enough to store the deletion, a prompt
asks if you wish to go ahead and Zap the text. (Use the Set environment command to see how
much memory is available; the copy buffer shares this memory with that used to hold the text
file in memory).

Recovery of the deleted text is achieved with the Copy (from buffer) command. Zap can also be
used to move large chunks of text from one location to another within a file.

Note that the effects of Zap can be surprising since the anchor position is set by four different
and commonly used commands (listed above). Therefore, it is a good practice to check the
location of the anchor (using the Equals command) before executing a Zap.

The Filer

Chapter

4

The Filer

Introduction

This chapter documents the use of the Pascal Filer, a subsystem of the Pascal system. The Filer
lets you manipulate files in various ways including moving, listing, duplicating, creating and
deleting files. The Filer can handle files on devices with a variety of directory structures and
physical characteristics. Before you read this chapter, you should read Chapter 2, Introduction to
the File System, which defines basic concepts such as files, volumes and directory organizations.

There are four main sections in this chapter. The first two demonstrate how to enter and use the
Filer by leading you through a sample Filer session which uses the more common Filer com-
mands. The next section (‘A Closer Look’’) presents detailed information about the Filer and its
operation. The section ‘‘Filer Commands’ contains an overview or summary of all the Filer
commands (useful for quick reference once you are familiar with the Filer) and a semantic and
syntactic description of each Filer command in alphabetical order. Any questions you have about
commands covered in the sample session should be answered in the commands section.

121

122 The Filer

Entering the Filer

If your system is not already “‘up and running”, refer to Chapter 1 for information on loading
the Pascal System. The following prompt must appear on the top line of your screen before you
can enter the Filer:

(Command: Compiler Editor Filer Initialize Librarian Run eXecute Version ?‘1

The prompt tells you that you are at the system’s Main Command Level — the level from which
all the Pascal subsystems (Compiler, Editor, Filer, etc.) are entered. Entry is accomplished by
typing the uppercase character of the subsystem you wish to enter (for instance, R for Run and X
for eXecute).

Insert the disc labeled ACCESS: and press the (F_) key. You can use either uppercase or
lowercase letters when typing commands at the Main Command Level. However, letter case is
important when typing file names. The screen displays:

(Loading ‘ACCESS:FILER')

You can use the Permanent command (from the Main Command Level) to keep the FILER
code file in memory if you wish. This will allow faster access to the Filer but uses more memory.
Chapter 1 explains how to ‘‘permanently load” the Filer.

The Filer Prompt

The screen clears and displays the Filer prompt on the top line:

ﬁiler: Chande Get Ldir New Quit Remove Save Translate Yols What Access Udi rq
You are now in the Pascal Filer subsystem. The Filer prompt shows the most common com-
mands used in the Filer and ‘“‘prompts’’ you to give the subsystem a command.

The prompt shows only a partial list of the available commands; to see the others, type (2).
The prompt line shows the Filer’s alternate prompt:

IFiler: Bad-secs Ext-dir Krunch Make Prefix-vol Filecory Durlicate Zero 7 [B.C)q
]

The alternate prompt displays the revision number of the Filer in brackets. Type again
and the main Filer prompt reappears.

The Filer

All Filer commands are initiated by typing a single key corresponding to the first character of the
command shown in the Filer prompt. Uppercase and lowercase command characters are treated
as equivalent by the Filer, so the keys may be typed in whatever form is convenient.

Filer operations can be aborted by typing (SHIFT)-(Select) ((SHIFT)-(_EXECUTE)) when a single
character is expected and (SHIFT) -(Select) (Return) or (ENTER) in place of a file specification.

Filer Operations

All of the commands in the Filer operate in one of two ways: the Filer either performs the
operation immediately (when you press the letter key for that command) or it requests the
information it needs to perform the operation and then does it. The request is generally for a
volume specification or a file specification since all of the Filer's commands (except Quit) operate
on volumes, directories and files.

A volume specification identifies a particular volume. This can be done by supplying any of the
following: the name of the volume; its associated unit number; a colon (:) to specify the default
volume; or an asterisk (#) to specify the system volume. A file specification consists of both a
volume specification and a file name; it completely identifies a particular file. All file specifications
include a volume specification even if by default. If the volume specification is omitted and only
the file name is given, the Filer looks for a file of that name on the default volume.

A Sample Filer Session

Work through the following examples on your machine as you read through this section.
Interacting with the computer will teach you more about the Filer than just reading the material.

Finding Out What Devices are Accessible

Now that you have the Filer prompt on the screen, press (_V_). This initiates the Volumes
command and the screen now displays the volumes or [/O units associated with the Pascal
System. Here is a typical display (yours may vary slightly):

()

Yolumes on-line:
1 CONSOLE:
SYSTERM:
MYUOL:
ACCESS:
SRM_WORK:
PRINTER:
45 * SYSTEMO4:
Prefix is - MYYOL:

L% 1 B - 4% I %
#

L3 By}

For each volume, the display shows the logical unit number and the associated volume which
are currently on-line. Volumes #5 and #45 are SRM volumes which you may or may not have.

123

124 The Filer

The “‘#’’ beside units 3, 4 and 5 indicates that these are blocked devices. These are used for mass
storage. The “*”’ beside unit 45 indicates that this is the system volume; also a blocked device.
The system volume is used by the system during certain operations and should be left on-line at
all time if possible. ‘‘Prefix is’’ indicates which is the default volume. The default volume is
assumed when no volume identifier is given. The default volume can be changed using the Filer’s
Prefix command and the Main Command Level’'s What command.

The Default and System Volumes

At power-up, the system generally designates the highest performance mass storage device as the
“‘system volume’’ because it needs a volume to work with occasionally. The system volume is
denoted by an asterisk (*) in the Volumes command display and remains fixed unless the New
system volume command or the What command is used at the Main Command Level.

The Prefix command, because it defines the default volume, lets you specify a particular volume
where the Pascal System will look for files when you haven’t given a volume name or logical unit
number. This is handy in the Filer as well as in other subsystems such as the Compiler or Editor.

The default volume can be indicated with the colon (:) character. For example, to list the directory
of the default volume, press (for the List directory command) and answer the prompt by
typing ‘:”’. The Filer then displays the directory of the current default volume.

Changing the Default Volume

You can use the Volumes command (from the Main Command Level) to see what volume is the
current default volume. It is listed under the heading Pre f i x in the Volumes display. You can
also see what the current default volume is by pressing (P) for the Prefix command. The
screen displays:

(Prefix to what directory 7 w

Respond by pressing (Return) or (ENTER). The screen now displays the current default volume. Now
press (_P_) again and in response to the prompt, type M0J0:. The screen now displays:

(Prefix is MOJO: 1

Now, whenever you want to specify a file or group of files on the MOJO: volume, you can just

type the file name(s) and the Filer will assume that the file or files specified are on the volume
MOJO..

Itis possible to set the default prefix to a flexible disc drive, regardless of the volume inside. This is
done by typing:

#3: (Return) or (ENTER

while the drive door is open.

The Filer

The prefix command is used to set up a working directory on a Shared Resource Management
system as well. If you had an SRM file named:

#5:USERS/JOE/PROJECT1/PROGRAMS/FILE

Initiate the Prefix command as usual and specify:

#5: /USERS/JOE/PROJECT1/PROGRAMS

This sets the SRM volume as the default volume and USERS/JOE/PROJECT1/PROGRAMS as
the working directory on the SRM. If the previous working directory had been PROJECT1, then
only PROGRAMS need be typed. Now you can specify the file with:

FILE

If you were to use the Prefix command again to set the default prefix to another volume (not on
the same unit), the working directory and volume name for the unit remain PROGRAMS. You
need only specify either of the following to get the same file.

#53:FILE

or

PROGRAMS:FILE

It is possible to change the working directory on an SRM unit without changing the default
volume. Use the Filer’s Unit directory command. Press (_U_) and then give the directory name
that you wish to become the working directory. If the new directory is in the existing working
directory, just type the new directory name. If it is not, type the whole directory path as shown
above in the Prefix example.

Note

Do not use the Prefix command on unit #45. This is the system
volume and should not be altered.

The System Volume

The system volume can also be specified in a shorthand form using the “*”’ character. Suppose
you want to specify the file named LIBRARY on the volume SYSVOL.:. Assuming that SYSVOL.
is the system volume and is currently in the disc drive associated with unit #3, you can specify a
file on that volume by entering any one of the following three methods:

SYSUOL:LIBRARY

or

#3:LIBRARY

or

*L IBRARY

125

126 The Filer

Of course you can make the specification even shorter by typing something like:

*=ARY

However, if you are doing a critical operation, be sure that there are no other files on the same
volume which fit that file specification or use the ? wildcard instead. If a file named GARY existed
on SYSVOL:, the operation would also be performed on it. Once again, use wildcards judi-
ciously.

Listing a Directory

To find out what files are on the disc called ACCESS:, press to initiate the List Directory
command. The Filer prompts you to specify the volume whose directory is to be listed:

»

List what directorvy

Respond by typing ACCESS : and pressing or (ENTER). Notice that the colon (:) is part of the
volume specification. The screen now displays the directory (catalog) for ACCESS:. It looks
similar to this display:

(")
ACCESS: Directory tvpe= LIF level 1
created B8-0ct-82 3.47.34 block size=2206
Storade order
vesfile mames s # blKs # bvtes last chnd
FILER 218 35808 B8-0ct-82
EDITOR 228 58368 B8-0ct-82
LIBRARIAN 202 51712 8-0ct-82
MEDIAINIT.CODE 132 33792 8-0ct-82
TARPEBKUP.CODE 54 13824 8-0ct-82
FILES shown=3 allocated=3 unallocated=11
BLOCKS (256 bvtes) used=834 unused=218 lardest srpace=218

The name of the volume is displayed in the upper left-hand corner of the listing. To the right,
the directory type is displayed. Pascal discs have Level 1 directories. Level 1 directories contain
the date the directory was created and the size of the volume. Level O directories do not. Your
directory listing should display the date the directory was created and the date it was changed as
system volume, the size of the storage blocks, and whether the listing is in storage order or
alphabetical order. The size of blocks on LIF volumes is 256 bytes (1 sector). The size of blocks
on WS1.0 volumes is 512 bytes. The Shared Resource Management system does its accounting
in 1-byte units. To have directories listed in alphabetical order, include [*] after the directory
name. For example:

LIFDIR:E*1]

The column entries for each file include: file name, number of blocks used for storage, the file
size in bytes, and the date the file was created or changed.

The Filer

The last two lines display additional directory information including how many more entries can
fit in the directory. The size of a directory is specified when the disc is initialized.

Getting a More Detailed Listing

To get a more detailed listing of the directory on a disc, press (_E) (for the Extended
Directory command) and you will be prompted for a volume name as before. Respond by

typing:
ACCESS: (Return) or (ENTER)

Your screen now displays:

~

ACCESS: Directory tvype= LIF level 1
created B8-0Oct-B2 3.47.54 block size=2356
Storade order
vevfile mamess o # blKs # hvtes start blK ++sslast chande.. extensionl
type t-code ,.,directory info.s+ +eescreate date.,, extension2

FILER 218 55808 4 B8-0ct-82 3.48. 6 0
Code -3582 1
EDITOR 228 58368 222 B8-0ct-82 3.,48.18 0
Code -5582 1
LIBRARIAN 202 51712 450 8-0ct-82 3.48.35 0
Code -5582 1
MEDIAINIT.CODE 132 33792 652 B8-0ct-82 3.48.44 0
Code -3582 1
TAPEBKUP.CODE sS4 13824 784 8-0ct-B2 3.48.48 0
Code -5582 1
UNUSED 218 838

FILES shown=5 allocated=5 unallocated=11
BLOCKS (256 bvtes) unsed=834 unused=218 lardest space=218

The Extended directory listing contains all the same information as the List directory listing with
additional information. It also contains the number of the block where the file starts, the type as
recognized by the file system, the type-code used by the directory system, SRM access informa-
tion and two extension fields.

The “‘directory info”” column shows the public access rights and the current file status for SRM
files. (Because the listing above is not from an SRM volume, the column is empty.)

127

128 The Filer

If one of the letters from the table below is missing, then the public access right associated with
that letter has been removed.

Letter Access Right

Manager
Read
Write
Search
Purgelink
Createlink

O9nWEI=Z

Public access rights on a file are established at one of two times. If a file is created by a program,
the public access rights can be established when the file is opened. To do this, use the optional
third parameter on the command used to open the file. The commands used to open files are
Reset, Rewrite, Open and Append. The optional third parameter is explained in more detail in the
File System chapter and in the HP Pascal Language Reference.

If a file already exists, the Filer's Access command can be used to establish or, if the Manager
right has not been removed, change the public access rights.

The possible “current file status’” are listed below and explained in the ‘‘File System’ chapter.

CLOSED
SHARED
EXCLUSIVE
CORRUPT

The two extension fields are for LIF directories only. The other directories display a ““—1"". For
most LIF file types, extensionl contains a *‘0”’. For system files, it contains the start execution
address. For data files, it contains the logical end-of-file. Extension2 contains the volume
number in cases of multi-volume files. The Pascal system cannot create or read multi-volume
files; the LIF DAM merely recognizes them. For single volume files, it contains a ““‘1".

The above examples are the most common uses of the directory listing commands, but there
are two other useful ways of using the command. One is to use a “wildcard’ to specify a subset
of files that you want listed. The other way is to send the listing to the printer or to a file instead
of letting the listing default to the screen. Both methods are combined in the example below
and are covered in detail in the *‘Filer Commands’’ section. Press (_E_) again (to initiate the
Extended Directory command) and answer the prompt for a volume specification as shown in
the display:

ﬁist_ext what directory ? ACCESS:=,CODE sPRINTER: (Return) or @TERﬂ

The ACCESS: volume should be on-line. Your specification tells the Filer you want a listing of
all the files on the ACCESS: disc whose name ends in ‘“.CODE’". The ‘=" acts as a substitute
for all combinations of characters in a file name. The *‘,”” separates the source specification from
the destination specification. The listing should only display the files whose names end with
“.CODE”. The EDITOR, FILER and LIBRARIAN are not listed because their names don’t end

in *“.CODE".

The Filer

A Few Words About Wildcards

Wildcards are powerful tools for executing Filer commands on related files. There are three
wildcard characters.

? = $

A wildcard is a substitute for an arbitrary portion of a file name. For example, if you wanted to
list all the .CODE files on the EXAMP: volume, you could specify:

EXAMP:=,CODE

The ‘="’ stands for any combination of characters. If the file name ended with “.CODE”, that
file would appear in the listing. If you wanted to remove some of the . TEXT files on the EXAMP:
volume, you could specify:

EXAMP:? TEXT

The ““?” also stands for any combination of characters. However, the Filer will ask you, one at a
time, if you want to remove each file that fits the specification. The ““?”” wildcard lets you verify
operations before actually performing them. Unless you are absolutely certain about the effects
of a command using the equals sign wildcard (=), its best to use the question mark — by far the
safer of the two.

The ““$” character is a valid wildcard for destination file specifications. It indicates that the file is
to retain its original name. If “‘$” is used with other characters, it is used as part of the name.

Wildcards act as replacement strings in file names. Part of a file name can be given before or
after the wildcard or both before and after. For example, two files named WILD.TEXT and
WILD.CODE on the default volume could be specified by:

WILD? or WILD=or =LD.=or 7ILD=
Partial file names must be given in the order in which they appear in the file name.

Translating Text Files

The Pascal system supports several different types of “‘text’ files. These files are usually created
by the Editor and can be programs, documents, or data. When the file is stored on a disc, the
internal representation (format) of the file is determined by the suffix appended to the file
specifier. The different formats have different information in the file header and can have
different end-of-line schemes. The Translate command can be used to convert from file type to
another. The various file formats recognized by the Pascal system are TEXT, ASCII, and DATA.
No suffix indicates a DATA file, a . TEXT suffix indicates a TEXT file and a .ASC suffix indicates
an ASCII file.

To use the Translate command, press and see the prompt:

(Translate what file 7]

129

130 The Filer

Respond with the name of your input file

MYUOL::MYFILE.TEXT

The Filer will then prompt:

(> Translate to what 7 <]

Respond with the name of your output file

MYUOLsNEWFILE.ASC

The Filer will create an output file of a type corresponding to the suffix on the output file name
(ASC in the example) and will read the text data from the input file, reformat the data to match
the output file type, and write the data to the output file. This process may seem slow, but
remember that the text is being reformatted.

Sending File Listings to the Printer and Screen

The Translate command is used to send files to the printer or to the screen. Logically, the printer
and screen are just files of a different format.

Before using the Translate command, remove the volume ACCESS: and replace it with the
volume DOC: (supplied with this manual set). Now use the Extended Directory command to
display the contents of the DOC: volume. Press (_E_), type in DOC: and press or (ENTER).
Your screen should display all the files on the documentation disc.

Press the space bar: this clears the screen of everything except the Filer prompt. Now press
(_T) toinitiate the Translate command. The screen prompts you with:

(Transfer what file 7)

Respond with DOC:BINDOC. TEXT and press (Retun) or (ENTER). The screen now prompts:

Translate what file 7 DOC:BINDOC.TEXT
Translate to what 7

The Filer

Your first response includes both a volume specification and a file name and completely identifies
the file you want to transfer. Now type PRINTER: and press (Retum) or (ENTER). The text file is
translated to the printer as shown:

BEGIN {Binerv.search’
done:=FALSE} btm:=03% tor:=26% {initialize}
FOR loocp:=1 TO torp DO alehalloorl:=CHR(loor+B4)
WRITELN{('Tvrpe uprercase character for a Kev’)3
READ(Kev)3 WRITELN;
WHILE NOT dowe DO
BEGIN {This is the actual binervy search}
midsi= ROUND((torp + btm)/2)3
IF Key = alphalmid]l THEN done:= TRUE
ELSE IF Kev < alphalmidl THEN topi=mid
ELSE btma=mid3i
IF toep=btm THEN BEGIN
done:=TRUEY mid:= -13%
END 3
END 3
IF mid > O THEN
WRITELN(‘Key ~-'sKevs»’~- is in pPosition " smid:2)
ELSE WRITELN('Key - ‘sKevs’ - was not found’)s
END.

The Filer shows you what operation it has just performed by displaying:

rr DOC:BINDOC.TEX == PRINTER: <]

Since the operation is complete, the Filer again displays its prompt. Note that only files of type
TEXT, ASCII or DATA should be sent to the printer. You can also Translate these files to the
screen by using CONSOLE: in the destination specification instead of ‘‘PRINTER:”. The file is
displayed one screen at a time. Press the spacebar to move to the next screen; press (SHIFT) -
(Select) ((SHIFT)-(_EXECUTE)) to abort the operation.

If you are not sure if the file in question is a text file, use the Extended Directory command and look at
the column in the display where the file types are shown.

Copying Entire Volumes: Backup Copies

The backup process described here is suitable for volume-to-volume copies if both volumes are
the same size. For different size volumes, see Filecopy in the ‘‘Filer Commands’ section.

Note
Using Filecopy to copy an entire volume will result in the loss of disc
space if the source volume is smaller than the destination volume. To
copy a volume to a larger one, Filecopy individual files.

131

132 The Filer

You should still be at the Main Command Level and now have a blank initialized disc. We will
use it for a volume-to-volume filecopy. Volume-to-volume filecopies do not require that a
directory be present on the destination disc.

Insert ACCESS: in the disc drive. Press (_F_) and the Filer gets loaded and displays its prompt:

(Filer: Chande Get Ldir New Quit Remove Save Translate Vols What Access Udir q

Press (_F_) for the Filecopy command and the screen shows:

(> Filecopy what file 7 ‘W

Now type ACCESS: and press (Return) or (ENTER). The screen displays:

Filecorpy what file 7 ACCESS:
Filecory to what 7

You can specify a volume by specifying the logical unit number associated with the physical disc
drive that it is in. Do this by typing #3: and pressing (Retum) or (ENTER). The Filer knows that
ACCESS: is currently in the drive associated with unit #3 and figures that you want to transfer
that volume to a different volume that will be inserted in the same drive. The Filer then reads as
much of ACCESS: as it can into read/write memory and the screen displays:

Please mount DESTINATION in unit #3
‘C’ continuesy <sh-excr aborts

Now remove ACCESS:, replace it with the blank initialized disc, and press (_€_). Since no
directory is on the initialized volume, the Filer simply copies the ACCESS: information that it
read into memory onto the new disc. If there had been a directory named TESTER: on the
destination volume, the Filer would have prompted:

Destroy directory of TESTER: 7 (Y/N)

This precaution makes sure the information on the disc does not get destroyed if you change
your mind or inserted the wrong disc. Answering with (_N) for “No’”’ aborts the Filecopy
operation and the Filer prompt returns. Answering with a for Yes lets the Filecopy take
place and the contents of ACCESS: are written to the new disc. This operation destroys the
directory (and, effectively, all information) that was previously on the destination disc.

In case your machine does not contain enough memory to read in the entire volume ACCESS:,
the Filer prompts you to swap the source and destination discs as many times as necessary to
complete the Filecopy operation. When the operation is complete the Filer prompt reappears.

The Filer 133

If you have more than one disc drive you can accomplish the same task by specifying both the
source and destination volumes with either a volume name (if it has one) or by the unit number
associated with the drive it is in. This second method of doing volume-to-volume transfers is
quicker — especially if the amount of memory in your machine is relatively small.

Note

Having two volumes with the same name on-line at one time is not
advised. The Filer looks for volumes according to their volume names
and may not be able to distinguish one from the other. Thus, the Filer
may perform an action on one volume when you wanted the opera-
tion to affect the other volume. The Filer warns you whenever it
detects that this condition exists. If you get a warning, either remove
one of the volumes or use the Filer's Change command to change the
name of one of the volumes.

Creating a Directory

In general, the Filer only works with volumes that already have directories. There are a few
exceptions to this rule, such as volume-to-volume transfers where the directory from the source
volume is copied onto the destination volume. Other exceptions are mentioned as they arise. The
Filer's Zero command creates an empty directory on a new disc that has been initialized using the
MEDIAINIT program, previously used discs, or on any other compatible type of mass storage
device such as a hard disc or a volume stored in read/write memory. The Zero command,
however, is not used to create directories on the Shared Resource Manager. This is done with the
Filer's Make command because making an SRM directory really involves making a file of type
“directory’’. '

Your screen should now display the Filer prompt. Remove the current volume from the disc drive
associated with unit number 3 and replace it with the second disc that you initialized. Now press
(U2) to initiate the Zero command. The screen displays:

(Zero directory (NOT valid for SRM tvere units) Zerowhat uolume?w

The request is for a volume specification. Answer with #3: and press (Retun) or (ENTER). The Filer
now prompts:

(Destrov U3: 7 (Y/N))

This question is just a safety precaution so that you won’t destroy a volume full of information
by accident. “*V3”’ is the name given to the directory by MEDIAINIT (if created on unit #3).

Press for yes. The next prompt is:

(Number of directory entries (8) 7 W

134 The Filer

This is asking for the maximum number of files that will be listed in the directory. The number in
the parentheses is the default that will be used if no value is given and is derived from the
number in the existing directory. In most cases, 80 directory entries is a good choice.

The next prompt is:

(> Number of bytes (270336) 7 <W

This is asking for the total size of the disc to be handled by the directory (the logical size of the
volume). The number in the parentheses is derived from the number in the existing directory (if
any) or from the unit table entry for that given unit. Press or to accept the default
size for your disc.

The system now prompts you for a volume name. Volumes and volume name syntax for the
different directory types are described in the File System chapter. Briefly, LIF directory names
must be six characters or less; upper and lower case characters being distinct. WS1.0 directory
names must be 7 characters or less and are always uppercased before being written in the
directory. The Filer then confirms that the volume name is the one you wanted. The screen now
appears:

()
Zero directory (NOT wvalid for SRM tvepe units)
Zero what volume 7 #3

Destroy ACCESS: 7 (Y/N) Y

Number or directory entries (8) 7 80

Number of bytes (27033G6) 7

New directory name? NEWONE

NEWONE: correct 7 (Y/N)

When you press to confirm the new volume name the Filer informs you that the volume
with that name has been zeroed and the Filer’s prompt appears. Your new volume is now ready
for use.

Copying Files from Volume to Volume

The Filecopy command allows you to copy files from one volume to another or even to a different
place on the same volume. The volumes can be separate discs, SRM directories or, in the case of a
hard disc, multiple volumes on the same physical device.

Remove the current volume from drive #3 and insert the DOC: volume supplied with this
document set. To copy a file from one volume to another, press (_F) for Filecopy and respond
to the prompt for a file specification with:

DOC:STREAM.TEXT

The Filer 135

When the Filer prompts you for a destination, type in the specification shown below and press
(Return) or (ENTER).

Filecory what file 7 DOC:STREAM.TEXT
Filecory to what 7 #3:%

What happens here is similar to copying a volume from one disc to another using a single drive.
The Filer reads the contents of DOC:STREAM.TEXT into memory and then displays the
message:

Please mount DESTINATION in unit #3
‘C’ econtinuess “sh-excr aborts

Take another disc and insert it in drive #3. Now that you have your new disc in drive #3, press
(C¢) to continue. The Filer writes the contents of the file that it temporarily stored in memory
to the disc you just inserted and confirms that the Filecopy has taken place.

If you give a unit number (as above) or a different volume name which is not on-line, you must
swap discs to complete the copy.

The wildcard ($) is a feature to avoid repetitious typing and tells the Filer to give the destination
file the same name as the original file — STREAM. TEXT.

When copying a file to a different volume, always include either a file name or the $ character
when you specify the destination. If you specify the name of a mass storage volume without a
file name, the Filer prompts:

(> Destroy directory of SYSUDOL: 7 ﬁ)

Although the volume name may be different, if you answer with a , the Filer transfers the
specified file to the destination volume, destroying the directory in the process, and rendering
all previous information on that volume useless.

The next example demonstrates how to copy multiple files from one volume to another using
the 7 character as a wildcard. Press (_F_) once again and respond to both the prompts as
shown:

Filecorpy what file 7 DOC:MOD?TEXT i]
Filecory to what ? MKWORK:%

136 The Filer

This tells the Filer to copy all the files on the DOC: volume that begin with the characters
“MOD”’ and end with the characters “TEXT" to the volume MKWORK: and to give them the
same name. Before it does this, it will verify with you that you actually want to copy each file
that fits the specification. Respond to each prompt with a for ‘““Yes’ and the three files
MODULE_1.TEXT, MODULE_2.TEXT, and MODULE_3.TEXT get copied onto your
MKWORK: volume from the DOC: volume. If you have a one-drive system, the Filer will
prompt you to swap the discs as in the previous example.

It is worth mentioning that, although specifying a unit number is less typing than specifying a
volume name, when you specify a unit number the Filer initially accesses the volume (disc)
currently in the drive without regard to whether or not it was the one you intended. After the
first access of a volume, the Filer associates a supplied unit number with the name of the
volume found in that device. However, if you specify a volume name, the Filer only performs
the command on that volume. If the volume you specified is not on-line the Filer will tell you so.
Specifying the volume name is a good habit if you are doing a lot of disc ‘‘swapping’’; this will
insure that the Filer does not operate on a disc other than the one you intended to use.

In cases where the destination volume already contains a file with the same name as the file
being copied, this prompt is displayed:

ANYVOL s XFILE
exists +4+4+ Removes Ouerwritesr Neither ? (R/0/N)

You have the options:

e Remove — remove the original file first, then write the new file in the largest space
available.

e Overwrite — replace the contents of the old file with the new information. The Overwrite
option cannot be used to change the type of a file on SRM. Attempting to do so will result
in the file contents being inconsistent with the file type.

® Neither — cancel the operation.

The Overwrite option allows you to put a file in the same starting location as the original. This is
important to SRM users when duplicate links-exist to a file. All links and passwords to the file are
accurate when a file is updated because it is put in the same logical location. If you chose the
Remove option, the original file would not actually be removed; only your link to it is removed.
The other user’s directories are still linked to the original file.

Note
Be careful when using the Overwrite option on an SRM system. If the
file specifier suffix ((TEXT, .ASC, or none) is not the same as the
original file suffix, the contents of the file may become inaccessable.

The Filer

Renaming Files and Volumes

The Filer’'s Change command allows you to rename files and volumes. (The one exception is that
the root directory of the Shared Resource Manager cannot be renamed.) This command requires
two specifications: the original name and the new name (the first name may include volume
specification and pathname and passwords for SRM, but the second name cannot). Assuming
that the volume MKWORK: is still on-line, press for Change and respond to the prompt as
shown:

(Chande what file © MKWORK: MOJO:)

The volume name is now “‘MOJO:”. To change the file STREAM.TEXT on the MOJO: volume to
RIVER.TEXT you can either type out both names (separated by either a comma or a press of the
(Retun) or (ENTER) key) or use a wildcard as shown below:

Chande what file 7 STREAM=
Chande to what 7 RIVER=

The Filer changes the file name as described. The wildcard was used as a substitute for the . TEXT
part of both names. The only restriction on using wildcards with this command is that if you use a
wildcard in one of the specifications, you must use it in the other. Because the strings or subsets
represented by the wildcard are not always obvious, discretion is advised when using wildcards
with the Change command.

When changing the name of a file of type TEXT or CODE, remember that parts of the Pascal
System attempt to append the suffixes . TEXT"’ or “. CODE" to the file you specify. You can get
around this by specifying a file and adding a period (.) to the file name. This tells the system not to
append the suffixes to the file name for which it searches.

Note

Excluding the Get command, the Filer makes no assumptions about
sufixes and will treat a trailing period as part of the file name.

137

138 The Filer

Removing Files
The Remove command is provided to delete files from a directory of a block structured volume.
Suppose you have a volume on-line named NEWSTUF: containing the file POLYNOM.TEXT

that you wish to delete. Press (R) to initiate the Remove command and respond to the prompt
as shown:

Remoue what file 7 NEWSTUF:POLYNOM.TEX

Then press (Retun) or (ENTER). The Filer removes the specified file from the volume and reports:

(> NEWSTUF : POLYNOM.TEXT remouved <)

The Filer prompt reappears as the message is displayed. As in many of the Filer's commands, the
prompt requests a file specification. Wildcards can be used with the Remove command but
should be used carefully. The question mark (?) wildcard provides an easy method for removing
a TEXT and CODE file of the same name. It also lets you verify the operation (a good practice
when purging files).

Suppose the same volume NEWSTUF: contains two files you wish to remove called IOTEST
.TEXTand IOTEST.CODE. To remove these files answer the ‘‘Remove what file ?”" prompt with:

NEWSTUF : IOTESTY

and press (Retum) or (ENTER). The Filer responds with:

Remouve IOTEST.TEXT 7 (Y /N

Reply with (for Yes) to remove the file. Reply with (_N) (for No) if you change your
mind. Either reply results in the next prompt:

Remove IOTEST.TEXT 7 (Y/N) ¥
Remove IOTEST.CODE 7 (Y/N)

Reply as before and the Filer responds with:

Remove IOTEST.TEXT 7 (Y/N)Y Y
Remove IOTEST.CODE 7 (Y/N)Y Y
Proceed with remove 7 (Y/N)

This gives you one more chance to change your mind about the operation. The files are not
actually removed from the volume’s directory until you press . Pressing (_N_) has the
same effect as if you had never initiated the command (i.e., the directory remains unchanged and
your files remain intact).

The Filer

If you want to remove all of the files on a volume (for discs only; not SRM), the quickest way to do
sois to execute the Zero command. This command wipes out the directory of a volume so that the
volume may be re-used. See the description of the Zero command earlier in this section or in the
“Filer Commands’’ section.

Leaving the Filer

Exit the Filer by pressing(__Q) for Quit from the Filer prompt. You will immediately be returned
to the Main Command Level. The Filer can also be exited with the key. The key
waits for any current disc I/0 to complete before it actually executes. This key can be used at any
time — even while executing a Filer command. However this practice is not recommended since
some commands may cause damage to your files if is pressed while they are being
accessed.

The System Workfile (A Convenient Scratchpad)

The Pascal System features a workfile which can be used in the Filer, Editor, Compiler and
Assembler. Each subsystem that uses the workfile documents its use.

Think of the workfile as being analogous to a default volume. In some of the subsystems, you are
not prompted for a file specification when entering the subsystem if a workfile of the appropriate
type exists. For example, if the text version of a workfile exists when entering the Editor, the
Editor never prompts you for a name of the text file to edit but reads in the workfile instead. As a
matter of fact, before you can edit any other file, you will need to use the Filer's New command
(preceeded by the Save command if you want to retain the file) to release the workfile. In the
same manner, invoking the Pascal Compiler when the text version of a workfile exists results in
that file automatically being compiled.

If the Filer's Get command is used, the workfile is the TEXT/ASCII/DATA and/or CODE file
specified in the command.

The Filer has four commands (Get, New, Save and What) which operate directly on the workfile.
These are covered in the next section.

139

140 The Filer

Filer Commands

This section contains a brief overview and summary of the Filer commands and a complete
alphabetized description of the syntax and semantics of all the Pascal Filer commands and

options.

Filer Command Summary

Volume Related Commands
Bad sectors — Scans a volume and searches for
unreliable (bad) storage areas.

Extended Directory — Lists directory information
about a specified volume or set of files.

Krunch — Consolidates all unused space on a
volume in a single area by packing the existing
files together. (Not valid for SRM)

List Directory — Lists directory information about
a specified volume or set of files.

Prefix — Specifies a new default volume.
Volumes — Lists the volumes currently on line.
Udir — Sets the default unit directory. (SRM only)

Zero — Creates an empty directory on the speci-
fied volume. (Not valid for SRM)

Exit Commands

Quit — Provides an orderly exit from the filer.

STOP - Pressing the (_STOP) key unconditional-

ly exits the Filer Subsystem. The current I/O
operation is completed before exiting.

File Related Commands
Access — Change the access rights (passwords) on
a file or directory. (SRM only)

Change — Change the name of a file, set of files, or
volume.

Duplicate link — Duplicates links to a file or set of
files. (SKM only)

Filecopy — Copies a file, set of files, or a volume to
a specified destination.

Make — Create a directory (SRM) or a file on a
volume.

Remove — Remove a directory entry or a set of
directory entries.

Translate — Translates text files of types TEXT,
ASCII, and DATA to other text file representa-
tions or to unblocked volumes.

Workfile Related Commands
Get — Specifies a file as the workfile.
New — Specifies that no file is the current workfile.

Save — Saves the current workfile(s) with the spe-
cified name.

What — Lists the name and current state (saved or
not saved) of the workfile(s).

The Filer

Command Syntax and Semantics

The Filer commands are presented in alphabetical order. Each command’s explanation includes:
the command’s name, a brief functional description, a diagram showing its legal syntax (See
Chapter 1), the command’s prompt (if any) and text which discusses using the command. Each
command'’s options are also covered and some have examples to show the proper use of these
options.

Several of the syntax diagrams on the following pages reference the the “‘volume only specifier”’
and the “‘complete file specifier’’ below. The ‘‘volume only specifier” is the syntax for commands
that operate on volumes. The ‘‘complete file specifier’’ is the syntax for commands that operate

TRE

on files. Volume only specifiers don’t need the *:”’ except when a literal volume name is given.

Then the name must end with a “:”’ to distinguish it from a file name. If no volume specifier is
given, the default volume is assumed.

Alphabetical List
of Filer Commands

Access

Bad sectors
Change
Duplicate
Extended directory
Filecopy

Get

Krunch

List directory
Make

New

Prefix

Quit

Remove
Save
Translate
Unit directory
Volumes
What

Zero

141

142 The Filer

File Specification

-0~ |
O——— YO O
unit
number y
volume
name
- J
{> |d1rect0ry|] -

’ | name I

e password °

e password °

.. Range
Item Description/Default Restrictions
unit number integer; corresponding to an entry in the unit 1 thru 50

volume name
password

directory name

file name

number of blocks

table
literal
literal

literal

literal

integer

See Chapter 2 for legal names and values.

any legal volume name
any legal password

any legal SRM directory
name

any legal file name

any legal number of
blocks

The Filer
Volume Specification
Item Description/Default Range
P Restrictions
unit number integer; corresponding to an entry in the unit 1 thru 50

volume name

table

literal

any legal volume name

143

144 The Filer

Access
The Access command allows you to change public access rights on your files (SRM only).

file
specification

attribute

or (ENTER

Range

Item Description/Default Restrictions

file specification literal a legal SRM file
specification

attribute literal MANAGER READ
WRITE SEARCH
PURGELINK
CREATELINK ALL

password literal any legal password (See
Chapter 2 for details)

Semantics
The Access prompt:

Access ridhts for what file 7
Type the file specification. If the file already has a Manager password, then you must include the
password in the file specification. Access rights cannot be changed on open files or open working
" directories.

The next prompt:

Access: Lists MaKes Remove, Attributesy Quit 7
These are the possibilities. You can list the attribute passwords, make new ones or remove
passwords. The Attributes option just lists the possible attributes for your help. Quit returns you to
the Filer prompt.

The Filer

To make new passwords, press (_M) . You see this prompt:

Make password:attribute 7

Type the password (up to 16 characters), then a colon (:) and the attribute list (attributes
separated by commas). Different passwords may be associated with each attribute or one with
ALL. If you type a password that already exists, you are asked:

PASSWORD already exists...rerlace it 7 (¥/N)

(‘>’7 [P R [X3RA)

Note that passwords should not contain the characters: ST

To remove passwords, press (_R_). You see the prompt:

Remove Password 7
Type only the password and all attributes associated with it are cleared.

The Attributes option list:

MANAGER
READ

WRITE
SEARCH
PURGEL INK
CREATELINK
ALL

145

146 The Filer

Bad sector

The Bad sector command scans a mass storage medium for errors.

volume
pe’c1f1cat10n| '((Betum) or (ENTER)) -

. Range
Item Description/Default Restrictions
volume specification literal (See the beginning of
this section)
Semantics

The Bad sector prompt:
Bad sector scan of what directory 7

The Bad sector command allows you to check a mass storage medium to find out if each block
(sector) is readable. A flexable disc may become unreliable after damage or excessive wear.

Press to initiate the command and answer the prompt with a volume only specifier. The
Filer then displays a message indicating that it is scanning the volume from block O to the end of
the volume. The Filer does a read operation on each sector and does a CRC error check on the
results. If the CRC results are normal, that sector is considered to be good; if not, the Filer lists the
sector number.

If you find a bad sector in a file, you may wish to use the Filer to change the file type (suffix) to
+BAD. (You did make a back-up copy didn’t you?) The BAD file will not be moved in a Krunch
operation. A large number of bad sectors indicates a worn-out medium. The medium should only
be used if you are willing to risk losing information on that volume.

The Filer

Change

The Change command lets you rename files, directories and volumes.

file new file
specification name

(Retum) or (ENTER)

(Retun) or (ENTER)

volume new volume
specification name

L. Range
Item Description/Default Restrictions
file specification literal (See the beginning of
this section)
volume specification literal (See the beginning of
this section)
new file name literal any valid file name
new volume name literal (See the beginning of
this section)
Semantics

The Change prompt:

Chandge what file?

The Change command requires two specifications: the original volume or file specification and
the new one. The two specifications can be separated by either a comma or a carriage return. If
you are changing the name of a volume, any legal volume ID can be used for both specifications.

To change the name of a file, use any legal volume ID in the first specification and only the new
file name in the second specification. The Filer is intelligent enough to know that the file whose
name you are changing resides on the volume identified in the first specification. After the Filer
has finished changing the name and updating the directory it reports the name changes it has
made.

Because many of the Pascal subsystems append the string « TEXT or . CODE to a file name given
in response to a prompt, it is a good idea to retain these parts of a file name when making a
change.

Wildcards (the = and ? characters) may be used in the Change command. If a wildcard is used in
the first specification, it must also be used in the second one. The subset string that is replaced by
the wildcard in the second specification (the new name) is the same as the string it stands for in the
first specification.

147

148 The Filer

Suppose you have a volume named BUGS : with the following files:

WHATISIT.TEXT
WHOISIT.TEXT
WHYISIT.TEXT

Specifying BUGS : WH=TEXT » FO=FA in response to the Change prompt results in the following
messages being reported by the Filer:

BUGS:WHATISIT.TEX chanded to FOATISIT.FA
BUGS:WHDISIT.TEXT chanded to FOOISIT.FA
BUGS:WHYISIT.TEXT chanded to FOYISIT.FA

Here is another example using the original files shown above on the BUGS : volume. Specifying
BUGS:WH=,TEXT s = resultsin:

BUGS:WHATISIT.TEXT changed to ATISIT
BUGS:WHOISIT.TEXT chanded to OISIT
BUGS:WHYISIT.TEXT chanded to YISIT

You may wish to create some empty files using the Make command and experiment with them
before using wildcards extensively. Until you get used to them, the effects of wildcards are not
always obvious.

Note

Using the Change command to ‘‘change’” a file name to the same
name results in the file being removed.

Note
The Change command does not change the file type.

The Filer

Duplicate

The Duplicate link command establishes a new pointer to a file (SRM only).

file

* B or —
ENTER

or

. Range
Item | Description/Default | Restrictions
file specification

literal (See the beginning of
this section)

Semantics

The Duplicate link prompt:
Durplicate link (valid only for S5RM tvepe units)
Durlicate or Mowve 7 (D/M)

Do you want the original pointer to the file removed after the duplicate link is established? If you
do, type (C_M_) — if not, type (D) .
The next prompt:

Dup_link what file 7

Type the SRM file specification (including the password if the CREATELINK capability has one).

Dup.link to what 7

Type the new file specification. Wildcards can be used in the specification. This puts a link to the
file in a second directory. If the Move option was requested, the original link is then removed.

If the file is referenced from two or more directories, the file is physically removed from the disc
only when all links to the file have been removed.

You should be aware that new CODE files generated by the Compiler, Assembler and Librarian
to replace older versions are not written in the same space (unless Overwritten). If several
directories have duplicate links to the same CODE file and the CODE file is recompiled, only one
directory has an accurate link to the new CODE file. Other users must use the Duplicate link
command to become linked to the new CODE file.

Note

Using the Duplicate command to ‘‘duplicate link’ a file to the same
file results in the file being removed.

149

150 The Filer

Extended directory

The Extended directory command lists the directory of a blocked volume or a set of files in the
volume.

file
specification

volume
specificatiaon

Return) or

file
specification

specification

v
destination

. Range
Item Description/Default Restrictions
file specification literal (See the beginning of
this section)
volume specification literal (See the beginning of
this section)
Semantics

The Extended directory prompt:
List_ext what directorv 7

The Extended directory command requires a legal volume ID or a file specification. Results can

be listed to the PRINTER: or to a text file if specified and separated from the first specification by a

comma. If no destination is specified the listing defaults to the CONSOLE. Wildcards are

available to identify subsets of files on the volume.

In the listing, the name of the volume is displayed in the upper left-hand corner. To the right, the
directory type is displayed. Pascal discs have Level 1 directories. Level 1 directories contain the
creation date and volume size information. Level O directories (created on other systems) do not.
Your directory listing should display the date the directory was created and the date it was
changed as system volume, the size of the storage blocks, and whether the listing is in storage
order or alphabetical order. The size of blocks on LIF volumes is 256 bytes. The size of blocks on
WS1.0 volumes is 512 bytes. The Shared Resource Management system uses single byte
“blocks”.

To have directories listed in alphabetical order, include [*] after the directory name. For example:

MYDIR:L[#*1

The column entries for each file include: file name, number of blocks used for storage, the file size
in bytes, the number of the block where the file starts, the date the file was changed, the type as
recognized by the file system, the type-code used by the directory system, SRM access informa-
tion, the date the file was created and two extension fields.

The Filer

The SRM access information column comes under the heading ‘‘directory info”. It contains
codes which show the public access rights:

M Manager
R Read

W Write

S Search

p Purgelink
C Createlink

And the current file status:

CLOSED
SHARED
EXCLUSIVE
CORRUPT

CLOSED, SHARED and EXCLUSIVE are file status that are associated with SRM systems and
are explained in detail in Chapter 2. If a file is ever marked CORRUPT, your Shared Resource
Manager has a problem. Stop your operation and notify the person responsible for your SRM. He
should restore the SRM to a usable state.)

The last two lines display additional directory information including how many more entries can
fit in the directory. The size of a directory is specified when the disc is initialized.

The results can be listed to a printer or a file if you so specify. The destination of the listing is
separated from the volume ID or file specification beinglisted by a comma and, if no destination is
specified, the listing defaults to the screen. Wildcards are available to specify groups or subsets of
files on a mass storage medium.

For example, assuming that SYSVOL.: (the system volume) is in the disc drive associated with
logical unit #3, a listing of all the CODE files on that volume could be sent to the printer by
specifying any of the following in response to the Extended directory prompt:

#3:=CODE »#B: specifies volume residing in unit #3; listing to logical unit #6: (the
PRINTER: volume)

*=CODEPRINTER: specifies system volume; listing to the PRINTER. Without the colon,
the listing would be sent to a DATA file named ‘‘PRINTER” on the

default volume.
SYSUOL:=CODE+#6 specifies SYSVOL: volume; listing to unit #6.

In all cases the ‘= CODE”’ string refers to all files whose names end in CODE on the specified
volume and the listing is sent to the printer.

151

152 The Filer

Listings can also be sent to a file. Use a destination parameter after the the source parameter
(separated by a **,”’) as in the above PRINTER: example. Give a complete file specification. Use
the appropriate suffix in the file name. Otherwise, a file of type DATA is produced. For example:

List what directory 7 #3:,58YSUVOL:LIST.TEXT

or

List what directory 7 #3:,5YSU0L:LIST.ASLC

The Filer 153

Filecopy

The Filecopy command copies a specified file, set of files or volume to the specified destination.

file
specification

volume
specification

or (ENTER

specification|

volume
specification

(Retur) or (ENTER)

.. Range
Item | Description/Default Restrictions
file specification literal (See the beginning of
’ this section)
volume specification literal (See the beginning of
this section)
Semantics

The Filecopy prompt:
Filecopy what file 7

The Filecopy command is initiated by pressing(_F_) and requires two specifications — a source
and a destination separated by either a comma (,) or or (ENTER). The source volume must
be on-line. The destination volume does not have to be on-line.

Wildcards may be used to specify sets of files. If the equals (=) wildcard is used, the copy is not
confirmed before taking place. Also, note that if the equals wildcard is used alone (i.e., without
any qualifying strings) then the Filer copies every file on the specified volume. If the question
mark wildcard is used, you are asked to verify the transfer of each file meeting the wildcard
specification before the Filecopy takes place. Thus, using the wildcard allows you more flexibility
and control over the process.

The dollar sign character ($) may be used in the destination specification to indicate that the file(s)
will have the same name (or names) as the source file(s). For example, assuming that there are a
number of TEXT files on the volume TRIG: and that a second volume named MATH: exists,

TRIG:=TEXT sMATH: %

This results in all the files on the TRIG: volume whose file names end with the string TEXT being
copied to the volume MATH: and given the same name as they have on the TRIG: volume.

Be sure to use either a file name or the $ character when specifying a destination volume. If, in the
example above, the destination volume was specified as MATH: instead of MATH:$, the Filer
would respond:

Destroy directory of MATH: 7

If you respond with , the directory of that volume gets overwritten. Pressing (_N_) aborts
the Filecopy command and returns the Filer prompt.

154 The Filer

On a system with a single disc drive, the Filecopy command proceeds by reading the specified file
or files into memory, prompting you to remove that volume and insert the destination volume,
and then writing the file(s) in memory to the destination volume. Depending on the amount of
memory in your computer and the amount of material being copied, you may have to swap discs
more than once.

Note

When using the Filecopy command with a single disc drive, wait for
the Filer’s prompt before removing the source volume and replacing it
with the destination volume. Failure to follow this guideline may result
in the loss of information from the source volume.

A size specification may be used in the destination description. For example, specitying:

SYSYOL:FILE OTHERVOL:FILEL33]

would result in the file being written to the first available area on OTHERVOL.: that was at least 35
blocks in size.

To make a back-up copy of an entire volume, use the Filecopy command. Simply type in the
source volume ID and the destination volume ID. The destination volume must be initialized but
does not have to be Zeroed (the directory gets copied from the source volume). The Filer will ask
you if you want the directory destroyed. A volume-to-volume copy makes an exact copy of the
source volume on the destination volume.

Note that having two volumes with the same name on-line at one time is not advised. The Filer
looks for volumes according to their volume names and may not be able to distinguish one from
the other. Thus, the Filer may perform an action on one volume when you wanted the operation
to affect the other volume. The Filer warns you whenever this condition exists. If you get a
warning, either remove one of the volumes or use the Filer's Change command to change the
name of one of the volumes.

You can copy files on one volume to a volume of a different size but you should not use volume
IDs alone to do this. If the source volume is larger than the destination volume, the Filer refuses to
execute the Filecopy. If the source is smaller than the destination, the destination volume ends up
the same size as the source when the operation is through so you lose storage space. Remember?
It makes an exact duplicate of the source.

The best way to handle copies between different size volumes is to use one of the wildcards. Use
the equals wildcard (=) if the destination is larger than the source and the question mark wildcard
(?) if the destination is smaller than the source. In the latter case you have to be selective in your
copies since there is not enough space for all of the files.

When the Filecopy command has finished its task, the screen displays what file(s) or volume has
been copied and the Filer prompt appears. The Filecopy command can be aborted before all
specifications are complete by pressing (Retun) or (ENTER) in response to the prompt.

The Filer

In cases where the destination volume already contains a file with the same name as the file being
copied, this prompt is displayed:

ANYWUOL: XFILE

exists +4++ Removes Duerwrites Neither 7 (R/0/N)

You have the options:

® Remove: remove the file before proceeding with the copy operation.

® Overwrite: replace the contents of the old file with the new information. The Overwrite
option cannot be used to change the type of a file on SRM. Attempting to do so will result in
the file contents being inconsistent with the file type.

® Neither: cancel the operation.

The Overwrite option allows you to put a file in the same starting location as the original. This is
important to SRM users when duplicate links exist to a file. All links and passwords to the file are
accurate when a file is updated because it is put in the same logical location. If you chose the
Remove option, the original file would not actually be removed; only your link to it is removed.
The other users are still linked to the original file.

Note

Using the Filecopy command to ‘‘copy’’ a file name to the same name
on the same volume results in the file being removed.

Note
The Filecopy command does not change the file type.

Note

Overwrite of a file of type SYSTM is not recommended because the
start execution address cannot be changed in an existing SYSTM file.

155

156 The Filer

Get

The Get command associates a specified file as the current workfile.

B Fil
G,,D)——ISQEC Sfieats On}—-»@n) or (ENTER) }—Dl

L. Range
Item l Description/Default | Restrictions
file specification literal (See the beginning of
this section)

Semantics
The Get prompt:

Get what file 7

The Get command is initiated by pressing (_G_) and prompts you for a file specification. If a
workfile currently exists when the Get command is executed, you are asked if you want to release
that file before being allowed to specify a new workfile. Upon receiving the specification, the Filer
finds the file (or files) and associates that name with the current workfile. Subsequent operations
on the workfile use the specified name. The workfile is generally named *WORK.TEXT and/or
*WORK.CODE.

The Get operation assumes that the text version of the specified file has a . TEXT suffix. If the text
version is ASCII, you must include the .ASC suffix. If the text version is DATA, you must include a
" at the end of the file name (to prevent the appending of the . TEXT suffix).

The operating system notes that either a text or code or both versions of the workfile exist.
Workfiles can only be of type TEXT/ASCII/DATA or of type CODE. If both text and code versions
of the specified file exist, both are associated with the workfile; if only one exists, the association is
made with that file. The Filer reports one of three things: either a text or code file has been loaded,
both have been loaded or the file cannot be found on the specified volume.

The Filer is not the only Pascal subsystem where a workfile can be created. The Compiler,
Assembler and Editor subsystems also create workfiles. Once a workfile exists, it is treated as the
default file in many of the subsystems. A workfile is “‘released’” by the Filer's New command.

The Filer 157

Krunch

The Krunch command moves all files on a block structured volume so that all the unused storage
space is at the end of the volume.

volume
CEHspecﬁlcatwn'_’Q@@ ”“)_"

e Range
Item | Description/Default l Restrictions
volume specification literal (See the beginning of
this section)

Semantics
The Krunch prompt:

Crunch what directory 7

If there is the slightest question about the reliability of the medium you are using (because of
excessive wear or damage), use the Bad sector command to do a scan of the sector on the volume
before initiating Krunch. If a bad sector is found, use the Filer's Make command to make a file of
type .BAD over the bad sectors. Krunch does not move files of type .BAD. Moving files onto an
unreliable area of storage is a good way to lose a file.

The Krunch command is initiated by pressing (_K_) and it prompts you for a volume ID. After
you respond with a legal volume ID of an on-line block structured volume, it prompts:

Crurich directory MKWORK: 7 (Y/N)

Where MKWORK : is whatever volume you specified. Typing for Yes lets the command
continue; (_N) for No returns the Filer prompt. The Krunch command executes a sensitive
operation -- that of moving all the files forward on the disc by reading the files into memory and
then writing them back out on the disc in such a manner so as to make all the unused space on the
volume contiguous at the end of the disc.

Note

UNDER NO CIRCUMSTANCES SHOULD YOU ATTEMPT TO IN-
TERRUPT THE KRUNCH OPERATION ONCE IT HAS BEGUN.
You are risking your directory and thus, all the information contained
on that medium if you do so. Do not touch the power switch, the door
on the disc drive or attempt to use the keyboard while a Krunch is
occurring.

158 The Filer

This process becomes necessary when, after repetitive reading and writing to the disc, the
available storage space becomes highly fragmented. The situation can exist where you have 100
blocks available on the disc but because they are allin 10 or 15 block chunks, there is not enough
contiguous storage space for the system to write a 20 block file to the disc.

The Krunch command is extremely useful and using it should not worry you. However, because it
alters the directory (which maps where the information on the disc resides), it is one of the
quickest ways to wipe out a volume. The precautions outlined above should help you avoid any
problems while using the command.

The Krunch command does nothing on SKRM units.

The Filer

List directory

The List directory command lists directory information about a block structured volume or one of
its subsets.

speciffjilz:ztion > or (ENTER)
ll
specification specificatiaon
specification
dest i;\ra tion
Item Description/Default Range
p Restrictions
file specification literal {See the beginning of
this section)
volume specification literal {See the beginning of
this section)
Semantics

The List directory prompt:
List what directory 7

The List directory command requires a legal volume or file specification. Results can be listed to

the PRINTER: or to a text file if specified and separated from the first specification by a comma. If

no destination is specified the listing defaults to the CONSOLE. Wildcards are available to

identify subsets of files on the volume.

In the listing, the name of the volume is displayed in the upper left-hand corner. To the right, the
directory type is displayed. Pascal discs have Level 1 directories. Level 1 directories contain
directory-create and volume size information. Level O directories (created on other systems) do
not. Your directory listing should display the date the directory was created and the date it was
changed as system volume, the size of the storage blocks, and whether the listing is in storage
order or alphabetical order. The size of blocks on LIF volumes is 256 bytes. The size of blocks on
WS1.0 volumes is 512 bytes. The Shared Resource Management system uses single byte
“blocks’’.

To have directories listed in alphabetical order, include [*] after the directory name. For example:

MYDIR:L[*]

The column entries for each file include: file name, number of blocks used for storage, the file size
in bytes, and the date the file was created or changed.

159

160 The Filer

The last two lines display additional directory information including how many more entries can
fit in the directory. The size of a directory is specified when the disc is initialized. You need one
256 byte block for each eight directory entries.

For example, initiating the command by pressing (L), specifying ACCESS: and pressing
(Return) or (ENTER) results in the following listing appearing on the screen:

ACCESS: Directory tvepe= LIF level 1
created 20-Ser-82 13,57.17 blocK size=2506
Storagde order

coefile mames o # blKs # hvtes last chng

FILER z18 35808 20-Sepr-82

EDITOR 224 57344 20-Ser-82
LIBRARIAN 202 51712 20-5epr-82
MEDIAINIT.CODE 132 33782 20-Ser-82
TAPEBKUP.CODE 54 13824 zZ0-Ser-82

FILES shown=5 allocated=5 unallocated=3

BLOCKS (256 bvtes) used=830 unused=223 lardest space=223

The Extended Directory command gives more information about the files and unused areas on
the volume.

The Filer

Make

The Make command creates files and directories.

file
@ ﬁ specihcatjon' '((Retn) or (ENTER)) -
(=)

. Range
Item | Description/Default | Restrictions
file specification

literal (See the beginning of
this section)

Semantics
The Make prompt:

MaKke File or Directory 7 (F/D)

The Make command is useful primarily in two ways. Files can be made when you need to reserve
physical space on a disc, and directories can be made on an SRM system.

The Make command is not required to create files to be used by the various Pascal subsystems. It
reserves space only; it in no way initializes or changes the contents of the space. In the Pascal
System, each subsystem lets you either create or specify any files you need. Users of HP BASIC
may quite naturally think that the same function is served by this command as the CREATE
command in BASIC (where you must create a file before using it). Thus the distinction between
these similar sounding commands is drawn here.

The Make command requires at least a file specification (which includes a volume ID by
definition) and accepts an optional size specification. If the (positive integer) size is given, it must
follow the file specification on the same line and be enclosed in square brackets. The Filer then
creates a file with the specified name and of the specified size on the first area of the volume that
has a large enough area of contiguous storage space to meet the size requirements.

When using a size specification to make a file, you must be aware that the size is specified in
“number of blocks”. The size of all “‘Make’” blocks is 512 bytes — regardless of the directory
type. A LIF directory considers a 256 byte sector to be a block. The WS1.0 directory considers a
block to be 512 bytes. So if you make a file on a LIF volume and specify 500 blocks, it will show
up in the directory as 1000 blocks.

For example, assume that there is a volume named MKWORK: on-line that has at least 22 blocks
of contiguous and unused space available. Press (_M_) to initiate Make, specifying:

MKWORK :DUX . TEXTL221 (Return) or (ENTER)

161

162 The Filer

This results in a file named DUX. TEXT being created on the first available area with 22 blocks of
the volume MKWORK: and the Filer reporting the following:

MKWORK :DUX . TEXT made

A subsequent listing of the directory (using the List directory or Extended directory commands)
will show a file of the same name with a 22 block size (on WS1.0 directories).

The size specification may be omitted in which case the Filer creates the specified file using the
largest unused area on the disc (i.e., the largest contiguous storage space on the disc will be
allocated to the file). It is recommended that you specify the size you want the file to be.

There are two special cases of size specification worth knowing about. The first is the number zero
enclosed in brackets [01 which is the same as omitting the size specification altogether — the
Filer uses the largest space available. The second case is the asterisk character enclosed in
brackets [* 1 which tells the Filer to make the file’s size either the second largest area on the disc
or half of the largest area, whichever is greater.

The Make command is useful if you must rebuild a file that was lost on a disc.

1. You must know its size and where it was located.

2. Then make TEMP files (e.q., TEMP1, TEMPZ2, etc.) over all the unused spaces on the disc
that are as large or larger than the file you’ll be making.

3. Then make a file of the proper type over the lost file to recover it.
4. Finally, use the Filer's Remove command to remove all the TEMP files.

An Extended directory listing can help you determine the location and size of unused areas on the
disc.

The above technique will not recapture lost files on SRM systems. However, the Make command
is used to create directories on an SRM system. For example:

Make File or Directory ° (F/D)
Answer the first question by typing (D) and specify where you want the directory located and

what is its name. The directory path tells where you want it and its name is the name on the end of
the path. For example, if you had an SRM directory:

#5:USERS/JOE/PROJECT1
If you wanted to create a directory for Project 1's DATA files, you should type:
#5:USERS/JOE/PROJECTLI/DATA

The DATA directory is created in the PROJECT1 directory.

The Filer

New

The New command releases or clears the workfile area.

Semantics

The New command requires no specifications. Upon pressing (N) to initiate the command, it
clears the workfile unless the workfile has been updated since the last Save command. If this is the
case, the prompt appears:

Throw away current workfile? (Y/N)
Responding by pressing (_N) for No allows you to use the Save command to write the file to a

volume; for Yes clears the current workfile area. When the Filer executes the New
command, it will respond with:

Workfile cleared

You can check the status of the workfile before using New with the What command. The What
command gives you the name and status (saved or not) of the current workfile.

Do not confuse the Filer's New command with the New system volume command at the Main
Command Level — the two commands are different and perform separate functions.

163

164 The Filer

Prefix

The Prefix command changes the default volume to the one specified.

Return) or (ENTER)

volume
specification

. Range
Item Description/Default Restrictions
file specification literal for SRM only (See the
beginning of this section)
volume specification literal (See the beginning of
this section)
Semantics ’

The Prefix prompt:

Prefix to what directory 7

The Prefix command is initiated by pressing (_P_) and requires a volume ID. The command
allows you to specify a new default volume — the one where the Filer searches for file specifica-
tions when a volume name is not specified. The volume must be block structured (one used for
mass storage) but does not have to be on-line. The current prefix (i.e., default) volume can be

obtained by responding to the Prefix prompt with a colon (:). (The Volumes command may also
be used).

When the command executes, the screen displays the message:

Prefix is MKWORK:

Where MKWORK: is the name of the current default prefix. The Prefix command saves keys-
trokes if you are doing a lot of file accessing on a particular volume.

Filer commands which request a volume ID may be answered with the colon character (:) which
specifies the current default volume.

Itis possible to set the default prefix to a flexible disc drive, regardless of the volume inside. This
is done by typing the following while the drive door is open.

#3: (Return) or (ENTER)

The Filer

The prefix command is used to set up a working directory on a Shared Resource Management
system as well. If you had an SRM file named:

#5:USERS/JOE/PROJECT1/PROGRAMS/FILE

Initiate the Prefix command as usual and specify:

#5: USERS/JOE/PROJECT1/PROGRAMS

This sets the SRM volume as the default volume (with volume name of PROGRAMS) and

USERS/JOE/PROJECT1/PROGRAMS as the working directory on the SRM. Now you can
specify the file with:

FILE
If you were to use the Prefix command again to set the default prefix to another volume (not on

the same unit), the working directory and volume name for the unit remain PROGRAMS. You
need only specify:

#5:FILE

or

PROGRAMS:FILE

Either will get the same file.

Note

Do not use the Prefix command on unit #45. This is the system
volume and should not be altered.

It is possible to change the working directory on an SRM unit without changing the default
volume. Use the Filer’s Unit directory command. Press (_U) and then give the directory name
that you wish to become the working directory. If the new directory is in the existing working
directory, just type the new directory name. If it is not, type the whole directory path as shown
above in the Prefix example.

165

166 The Filer

Quit

The Quit command exits the Filer subsystem and returns control to the Main Command Level.

Semantics

The Quit command has no parameters and no specifications of any type are needed. Pressing
(@) exits you from the Filer and the Main Command Prompt is displayed on the screen.

The Filer
Remove
The Remove command purges specified files from the directory.
(D)
W
spec ifflilceat ion or
e Range
Item Description/Default Restrictions
file specification literal (See the beginning of
this section)

Semantics
The Remove prompt:

Remove what file 7

The Remove command is initiated by pressing (_R_) and requires a file specification. The
command removes the specified file from the directory, updates the directory and reports the
action it has performed. Wildcards may be used to specify a subset of files to be removed. If the
equals wildcard (=) is used in the file specification, the Filer reports the specified file or files and
then prompts:

Proceed with remove 7 (Y/N)

This is the last chance you have to change your mind about the removal. Pressing(_ N) for No
aborts the operation and no files are removed. Pressing for Yes removes those files
meeting the wildcard specification from the directory. The process is not always reversible.
However, the Make command can sometimes be used to recover a removed file.

Note

The Filer considers the file specification = to specify ALL the files on
the default volume and MKWORK: = to specify ALL the files on the
MKWORK: volume. If you use the wildcard in this form and respond
to the Filer's prompt (Proceed with remove 7 (¥Y/N))with
a for Yes, every file on the directory of the specified volume is
removed. Responding with a (_N_) for No aborts the operation.
Wildcards can be hazardous to your files — watch the prompts.

Specifying a single file (of an on-line volume of course) in response to the Remove prompt results
in the removal of that file from the directory and a report that the file has been removed. Once the
or (ENTER) key is pressed following the file specification (unless wildcards are used), that file
is gone.

167

168 The Filer

While the use of the equals wildcard (=) results in being prompted for whether or not you want
the directory updated, the question mark wildcard (?) acts slightly differently. It allows you to be
more selective in your removal. Given the volume PROCESS: containing the files:

NOVMEMO . TEXT
MARKLTR.TEXT
PARSER.TEXT
PARSER.CODE
GARBAGE . TEXT

The specification PROCESS:?TEXT in response to the Remove prompt results in the screen
clearing and the following message appearing.

Remouve NOUMEMO.TEXT 7 (Y/N)

Answering with eithera (_Y) or (_N) results in the next prompt appearing below the first:
Remouve MARKLTR.TEXT 7 (Y/N)}

The process continues until you have been prompted for all the TEXT files on the PROCESS:
volume and then the final prompt appears:

Proceed with remove 7 (Y/N)
You may be respond with eithera (_ Y) (for Yes) or (N) (for No). The files are not actually

removed until this prompt is answered witha (Y). The 7 wildcard thus allows you to be both
selective and relatively safe about your file removals.

The Remove operation treats SRM directories like files if they are empty. Remove is not allowed
on non-empty SRM directories.

The Filer
Save
The Save command saves the current workfile on the specified volume.
]
> >
o) spec ifflllcea ti OHI_.C or)_J
It Description/Default Range
em P Restrictions
file specification literal {See the beginning of
this section)

Semantics

The Save command is initiated by pressing(_§) and may or may not require a file specification.
If the workfile was never updated, it is automatically saved with the original name.

If the workfile was previously named using the Save command, or originally obtained using the
Get command, then the Filer prompts:

Save as PREVIOUS.TEXT 7 (Y/N)

Where PREVI0US, TEXT is the name previously associated with the workfile. Responding with a
for Yes results in either a CODE or TEXT file (or both, depending on what is in the
workfile) of that name being removed and replaced with the current workfile.

If the workfile is not named, or if you answer (_N), the Filer prompts:

Save as what file 7?

When naming the file, the following conventions apply to the type of the file:
1. If a standard suffix is recognized, the workfile is either Filecopied, Translated or Changed
(on the system volume) to the file name and type.
2. If no suffix is recognized, a .TEXT file is the default.
If no suffix, but a ““.”” is found, the file type is DATA.

4. The.CODE file is created by removing the suffix (if there is one) and adding . CODE to the
file name.

w

The Filer displays that the file is now saved.

To find out what the current name and state (saved or not) of the workfile is, use the What
command.

169

170 The Filer

Translate
The Translate command converts text files between the TEXT, ASCII, and DATA formats.

file
specification

volume
specificatiaon

- file 1 () or (B0
C[—D specification o

. Range
Item Description/Default Restrictions
file specification literal (See the beginning of
this section)
volume specification literal (See the beginning of
this section)
Semantics

The Translate prompt:

Translate what file 7

The Translate command is initiated by pressing and requires two specifications — a source
and a destination separated by either a comma (,) or a carriage return (press or (ENTER)).
The source specification can be any block structured volume, any file or any group of files on a
volume. The destination specified can be any of the above and may also be a non-block
structured volume (i.e., the PRINTER: or CONSOLE :). Non-block structured volumes (like the
PRINTER:) are assumed to be on-line.

Wildcards may be used to specify sets of files but if a wildcard is used in the source specification,
either a wildcard or the character (discussed below) must be included for the destination. If the
equals wildcard (=) is used, the translate is not confirmed before taking place. Also, note that if
the = wildcard is used alone (i.e., without any qualifying strings such as LIBR, TEXT, etc.) then
the Filer Translates every file on the specified volume. If the question mark wildcard (?) is used,
you are asked to verify the translate of each file meeting the wildcard specification before the
Translate takes place. Thus, using the * wildcard allows you more flexibility and control over the
process.

The dollar sign character ($) may be used in the destination specification to indicate that the file(s)
will have the same name (or names) as the source file(s). For example, assuming that there are a
number of TEXT files on the volume TRIG: and that a second volume named MATH: exists,

TRIG:=TEXTsMATH: %

This results in all the files on the TRIG: volume whose file names end with the string TEXT being
translated to the volume MATH: and given the same name as they have on the TRIG: volume.

The Filer

On a system with a single disc drive, the Translate command proceeds by reading the specified
file or files into memory, prompting you to remove that volume and insert the destination volume,
and then writing the file(s) in memory to the destination volume. Depending on the amount of
memory in your computer and the amount of material being translated, you may have to swap
discs more than once.

Note

When using the Translate command with a single disc drive, wait for
the Filer’s prompt before removing the source volume and replacing it
with the destination volume. Failure to follow this guideline may result
in the loss of information from the source volume.

The Translate command allows the translating of files or groups of files to non-block structured
devices like the PRINTER : and CONSOLE :. Only text (TEXT, ASCII, DATA) files should be sent
to printers since other files are not generally human readable.

When the Translate command has finished its task, the screen displays what file(s) have been
translated and the Filer prompt appears. The Translate command can be aborted before all
specifications are given by pressing (Retum) or (ENTER).

In cases where the destination volume already contains a file with the same name as the file being
Translated, this prompt is displayed:

ANYYVOL:XFILE
exists ++4 Removes, Querwrites, Neither ? (R/0/N)

You have the options:

® Remove: remove the existing file before proceeding with the translation.

e Overwrite: replace the contents of the old file with the new information. The Overwrite
option cannot be used to change the type of a file on SRM. Attempting to do so will result in
the file contents being inconsistent with the file type.

® Neither: cancel the operation.

The Overwrite option allows you to put a file in the same starting location as the original. This is
important to SRM users when duplicate links, passwords, etc. exist to a file. All links and
passwords to the file are accurate when a file is updated because it is put in the same logical
location. If you chose the Remove option, the original file would not actually be removed; only
your link to it is removed. The other users are still linked to the original file.

172

The Filer

Unit directory

The Unit directory command changes the volume name and working directory for an SRM unit.

file

specification
volume

specification

or (ENTER

. Range
Item | Description/Default | Restrictions
file specification literal {See the beginning of
this section)

Semantics
The Unit directory prompt:

Set unit to what directory 7

The Unit command changes the working directory on SRM units. The working directory and the
volume name for SRM units are the same. The Prefix command performs the same operation but
sets the default volume to the SRM volume. The Unit command does not.

To specify the working directory, you must start either from the existing working directory or from
the root directory.

To get to the root, an SRM volume identifier must be given or the default is assumed. Follow the
volume ID with /", This positions you in the root directory.

The Filer 173

From the working directory, you can continue down the tree structure from directory to directory
or you can go back up the structure one directory at a time using *‘..”” for the parent of the current
directory.

For example, if the present working directory for unit #5 is:

USERS/.JOE/PROJECT1/PROGRAMS

and you wanted the new working directory to be:

USERS/JOE/PROJECTS/DOCUMENTS

you can specify it in one of the following ways.

#35:/USERS/JOE/PROJECTS/DOCUMENTS

or.

PROGRAMS: /USERS/JOE/PROJECTS/DOCUMENTS

or:

#3:../.,./PROJECTS/DOCUMENTS

or.

PROGRAMS:++/ 4+ /PROJECTS/DOCUMENTS

174 The Filer

Volumes

The Volumes command lists the volumes currently on-line.

Semantics

The Volumes command requires no specifications. Upon pressing it displays the following
information about all on-line volumes currently associated with the Pascal System: the logical
unit number associated with a volume, whether the volume is the system (boot) volume, a block
structured volume or a non-block structured volume, the volume’s name, and the current Prefix
or default volume.

This is a typical display generated by the Volumes command:

Uolumes on-lines

1 CONSOLE:
2 SYSTERM:
3 # MINI3:

4 # MINId4:

S % Y_SRM:
B PRINTER:

45 % SYSTEMO4:
Prefix is - MY_SRM:

The number on the far left is the logical unit number associated with the volume. The * character
in the second column indicates the system volume which is always block structured. The #
character indicates all other block structured volumes currently on-line. The remaining volumes
(shown with no character in the second column) are non-block structured. The last line of the
display shows the current default volume. It is where the system looks for a file when no volume
has been specified.

The above configuration shows two 3.5 or 5.25-inch flexible disc drives associated with units #3
and #4 and two SRM volumes associated with units #5 and #45. Respectively, they are the
working volume and system volume.

The Filer

What

The What command displays the name and state (saved or not) of the workfile.

Semantics

The What command is initiated by pressing (_W_) and requires no other input. The command
shows the name of the current workfile or indicates that it is not associated with a file name. It also
shows whether or not the workfile has been saved since the last update to the file. If no workfile
exists, the Filer responds with:

No workfile

Suppose you had two files named INFRARED.TEXT and INFRARED.CODE on the default or
prefix volume. Assume that you used the Filer’'s Get command and specified INFRARED to
associate the files with the workfile. If you then edited the TEXT version of that file (using the
Pascal Editor), returned to the Filer and executed the What command, the screen would display:

Workfile is INFRARED (not saved)
because the workfile was changed since the last time a Save command was executed.

Saving the workfile does not change the fact that the workfile exists. It is still there. The New
command is used to clear the workfile. Saving the workfile is not remembered between separate
sessions of the Filer. If you Save the workfile during the current Filer session, a New command
immediately clears the workfile. If you Save it, quit the Filer and then return to use the New
command, the Filer will ask:

Throw away current workfile 7 (Y/N)

even though you saved it during the previous Filer session and haven’t updated it since.

175

176 The Filer

Zero

The Zero command creates an empty directory on the specified volume. The Zero command is
not allowed on SRM volumes. (See the Make command.)

o volume
C(ﬁz] spec1ficatlonl_{°'@"m)""

N Range
Item I Description/Default | Restrictions
volume specification literal (See the beginning of
this section)

Semantics
The Zero prompt:
Zero directory (NOT wvalid on SRM tyepe units)

Zero what directory 7

The Zero command is initiated by pressing (_Z) and requires the volume ID of a block
structured volume. The volume must be formatted using the Pascal utility program
MEDIAINIT.CODE supplied on the ACCESS: volume.

Since the Zero command creates an new empty directory on the volume, you will be prompted:

Destroy THISWOL: ? (Y/N)
Responding with a (_N_) for No aborts the command and returns the Filer prompt.

If you answer (_Y), the next prompt is:

Number of directory entries (B) 7

The number in the parentheses is the number in the existing directory. Respond with or
(ENTER) if that is the number you want. If there is no number in parentheses, (Retun) or (ENTER)
causes the default number for that directory type (80 for LIF; 77 for WS1.0) to be put on the disc.

The Filer

The next prompt is:

Number of hbhvtes (270336) 7

Itis asking for the logical size of the disc (the extent to be managed by the directory). The number
in the parenthesis is the number in the existing directory or the default for that disc. Press
or (ENTER) to use the displayed number.

The next prompt is:
New volume mname 7
The Filer is asking for a legal volume name. Volume name formats vary with different directory

structures. LIF directories allow up to six characters with upper and lower case characters being
distinct. WS1.0 directories allow up to seven characters and all are made upper case.

An answer of (Retun) or (ENTER) aborts the Zero command.

After typing a volume name, the final prompt appears:

NEWSTUF: correct 7
Responding with (_N_) aborts the Zero command. Responding with results in the
message:

NEWSTUF: zeroed

Where NEWSTUF: is the name of the new volume. The Filer prompt reappears when the
operation is complete.

Note

Because the file system works with volume names, a LIF volume
whose name is all blanks (ASCII spaces) will not be recognized as a
valid volume.

177

178 The Filer

Notes

Chapter

Pascal Compiler 5

Introduction

The Compiler supplied with your system accepts the Pascal language specified by a Hewlett-
Packard Company standard. HP Pascal is designed to be a superset of the ISO Pascal Standard.
This language implementation is described in the HP Pascal Language Reference for Series 200
Computers.

In addition, Compiler options can be used to enable or disable certain language features. Under
control of these options, the Compiler can also process

® Programs restricted to the ISO definition
® Almost all the features of UCSD Pascal'
e Certain language extensions needed for system programming applications

UCSD Pascal and system programming extensions are described in this chapter and in the HP
Pascal Language Reference for Series 200 Computers.

HP Pascal is intended to be as portable as possible across the many computers and operating
systems used in HP. Use of the UCSD or system programming extensions may produce programs
which are hard to transport. Whenever processing of non-standard language features is enabled,
the Compiler displays a warning on the CRT and at the end of the compilation listing.

The Compiler is a one-pass design. It takes as input one or more source text files built by the Editor,
and generates an output file of relocatable MC68000 object code, ready to be linked and run.
Relocation and linking happen automatically when you execute the Run command — normally
there is no explicit link step.

Compilation speed depends on the mass storage device where the source and object code reside.
With floppy discs, about 1600 lines per minute is typical. If the files are memory-resident, the rate is
around 4000 Ipm. The Compiler’s speed contributes significantly to the interactive and crisp feeling
of the Pascal environment.

The Compiler, supported by other subsystems, provides complete facilities for the creation, mainte-
nance and use of software libraries. Modules of Pascal code can be compiled, stored in the system
library, and automatically accessed by any program which needs them. Compiled modules carry
along a detailed specification of their interface to any program which uses them.

1 “UCSD Pascal” is a trademark of the Regents of the University of California.

179

180 Pascal Compiler

Steps In Program Development

This section will teach you by example the steps required to compile and run a simple program.
You need to know how to use the Editor before you can proceed with this material. We begin at the
Command level of the system, with no workfile present.

Prepare the Source Program

First we need a program to compile. Enter the following program using the Editor. The Compiler
isn’t particular about margins, so you can adjust the program to the left margin as you type. Try to
preserve the indentation, to keep the program easily readable by mortals.

Notice that the word ‘‘end’” is intentionally misspelled at the bottom of the program. Type it just as
shown, so you can see how errors are handled.

When you leave the Editor (Quit command), you should specify that the output is to be Written to
the file “HOWDY"". Don’t make a workfile (don’t use the Update option).

prodram howdy (inPutsoutpPut)s
typPe
color = (redsorandesvellowsrdreen)i

var
hue: colori
it inteder:

procedure show (cicolor)s

bedin
writeln(outrPuts Howdy! ‘ye)i
i 1= i+11i
ends
bedin
writeln(outrPut)i i 0= 03
for hue := red to dreen do
show(hue) 3
emd .

At this point, if you use the Filer to examine the directory of your default volume, you'll see the file
“HOWDY.TEXT" .

Invoke the Compiler

The Compiler is invoked by typing the key when the system is at the Main Command
Level. At the time you booted up, the system looked for the Compiler on all the mass storage
volumes which were on-line. If the Compiler was found at that time, it is expected to still be in
the same volume whenever it's needed. If the Compiler wasn’t found, the system will try to run
CMP:COMPILER (or the file specified with the last What command).

So if you press and the system responds that it can’t load the Compiler, you must first
put the CMP: disc in a drive, then press again.

[t takes a few seconds for the Compiler to load from a floppy disc. Then it will ask you,

?

Compile what text

Pascal Compiler

If you had to swap discs, you should remove the CMP: disc and put back the default volume.
Now respond:

HOWDY (Return) or (ENTER)

The Compiler automatically appends the . TEXT"’ suffix to the name you give; you need not
do so yourself. Next you are asked,

Printer listing (l/v/n/e) 7
If you have no printer, you must answer (_N_) for no listing or for a listing file. If you’ve
got a printer, the response gets you a complete listing. Answering (_E) will get you a
listing only of any errors which are detected. For the moment, let’s answer (_N) and get no

listing. Finally the Compiler asks:

OQuteput file (default is "HOWDY.CODE") 7

Respond to this by pressing (Retum) or (ENTER) to accept the default.

As the Compiler runs, you can observe its progress through the source program. Each dot
displayed represents five lines of the source text which have been scanned. Whenever the body
(the “‘begin’’) of a new procedure is reached, that procedure’s name is displayed on the screen
along with an estimate (in square brackets) of how much memory is still available for the
Compiler to use. The Compiler reads through an entire procedure body before generating any
code; if you write very large procedures, you may notice the stream of dots hesitating momen-
tarily at the ends of some of them.

When the misspelled word “‘emd” is encountered, the Compiler will beep and display the
offending line. You now have three options: press the space bar to continue compiling, hold
down and press (Select) ((_EXECUTE)) to terminate the compilation, or enter the Editor to fix
the mistake. You should select “Edit” by pressing (_E).

Note
The Editor must be Permanently loaded, or the volume containing the
Editor must be on-line to use the @ option when exiting the
Compiler.

Handling Syntax Errors

If the Compiler is printing a listing, it will report errors on the printout, rather than interactively,
giving you an opportunity to edit the program. In this case, you must call the Editor yourself after
the compilation is finished.

When the Compiler points out a syntax error, the place it indicates is not necessarily the place
where the error occurred; rather, you are shown where the error was first recognized. An easy way
to get extreme examples of this is to accidentally have unbalanced ‘‘begin’” and “‘end” pairs in a
deeply nested program. The imbalance may be syntactically (though not visually) undetectable
until much later in the program. Compilers don’t see what you mean, only what you write

181

182 Pascal Compiler

The error message may not seem reasonable to you. For instance, your misspelled *‘end’” looks
to the Compiler like an undeclared identifier which may be the beginning of an assignment
statement. The Compiler sees no similarity between “end’” and “‘emd”.

When an error is detected, the Compiler tries to recover by making an assumption about what
you meant. Frequently the assumption is wrong, which leads to further errors being reported in
the vicinity of the first one. Sometimes the Compiler will try to recover by skipping text until it
sees a keyword or other symbol it recognizes.

Back to the example: you elected to edit the program, so the Compiler terminated and the
Editor is now invoked. The file containing the offending line is automatically brought in, and the
cursor is placed where the error was reported. Simply fix the misspelling and quit the Editor,
using the Save option to rewrite the corrected file under its original name, “HOWDY".

Repeat the steps above to compile HOWDY again. If you have a printer, this time you should
ask for a listing. If there are no other accidental errors, the compilation will succeed this time.
Your printout should look like this:

Pascal [Rev 2,0 10/19/821 HOWDY.TEXT 19-0c¢t-82 14:08:32 Pagde 1
1:D O prodram howdy (inpPut, output)s
2:D 1 tvpre
3:D 1 color = (redsorandesvellowsdgreen)s
4:D 1 var
5:D -2 1 hue ¢ colori
G:D -6 1 i ¢ inteder?
7:5
8:D 1 procedure show (c:color)i
9:C 2 begin
10:C 2 writeln(outeput s "Howdy! EY-DE
11:C 2 i o1= i+13
12:C 2 erndi
13:8
14:C 1 bedin
15:C 1 writeln(output)i i 1= 03
16:C 1 for hue := red to dreen do
17:C 2 show(hue) i
18:C 1 end.

No errors, No warnings.

Interpreting the Compilation Listing

The column of numbers at the left enumerates the lines. ‘D’ next to the line number indicates the
line is a declaration; ‘S” indicates the line was skipped altogether, either because it's blank, or
because it is entirely within a comment. “‘C” indicates the line is part of the body of a Pascal block.

The two numbers, -2 and -6, provide information about where the variables “‘hue” and “‘color’ will
be stored in memory. More detailed information about this can be requested by the $TABLES$
Compiler option.

Pascal Compiler

The column of numbers immediately to the left of the program text shows how deep structures in
the program are nested. This can be very useful when begin’s and end’s get out of balance. The
main program is at level 1, with procedures nesting successively deeper. The structural nesting of
complex statements such as for-loops, if's and with’s is also counted.

Running the Compiled Program
If you use the Filer to look at the directory of your default volume, you’ll see that there are two
HOWDY files now: HOWDY.TEXT and HOWDY.CODE . Press the (_ R) or (RUN) key. The

operating system remembers the name of the most recently compiled file. You'll see the
message,

Loading ‘HOWDY.CODE’

The program runs, producing this display on the screen:

Command: Compiler Editor Filer Initialize Librarian Run eXecute Yersion 7
Howd v ! RED

Howd ! ORANGE

Howdy ! YELLOW

Howdy ! GREEN

You can also run the program by using the eXecute command: press the (Select) ((EXECUTE)) or the
(_Xx) key. Then when asked

Execute what file 7

answer

HOWDY (Return) or (ENTER)

Try it now. Actually, you can eXecute any program, not just the one you most recently com-
piled. Also, if you use the Run command when you haven’t compiled any program, the
behavior is as if you used the eXecute command.

Using a Workfile

The Compiler’s behavior depends somewhat on whether you are compiling a workfile, or some
other source file. If you use a workfile, you are asked fewer questions by the Compiler and Editor;
in fact, while the workfile is present you can’t compile or edit any other file! This kind of abbreviated
behavior may be a blessing or a curse, depending on your needs.

Workfiles are most useful when you’re writing a small program and you’re in a hurry. In that case
you’ll appreciate the convenient reduction in keystrokes needed to compile and run the program.
On the other hand, experienced programmers developing complex systems with many source files
almost never use workfiles.

183

184 Pascal Compiler

Workfiles are not particularly useful unless the Editor has been permanently loaded, or the volume
containing the editor is on-line. This is particularly important in systems which have no external
mass storage.

There are two ways to tell the system to use a workfile. You can create one by using the Update
option when quitting the Editor; a workfile made this way will always be called WORK TEXT, and it
will be stored in the system volume. Alternatively, you can designate some existing file as the
workfile by using the Filer's Get command. The Update option and the Get command are ex-
plained in the Editor and Filer chapters of this manual.

Let's make a workfile of HOWDY using the Editor. Press the (_E_) key, and answer that you want
to edit HOWDY. Immediately use the Quit command, and select the option to Update the workfile.
This makes a copy of your original source file (but not of the code file). Note that the system volume
must be on-line at this point, since that is where the workfile is kept.

Now press (_R_). If the Compiler isn’t on-line, you will need to insert your CMP: disc first. If you
swapped disks, then after the Compiler is loaded it will say:

Mount #WORK,TEXT and press <spacecr

As you can see, the Compiler knows it’s supposed to compile the workfile, and you must put
your system volume back in the drive. If the Compiler was already on-line, only one question is

asked after you press (R)
Printer listing (1/¥/n/e) 7

Probably you’ll answer no. The program then compiles, producing WORK.CODE, and im-
mediately runs.

To execute it again, just press (_R). It won't be recompiled unless you use change it with the
Editor. If you aren’t convinced it actually ran again (it happens pretty fast), press the space bar to
clear the screen before running it again.

Debugging
The Debugger subsystem is described in detail in a later chapter of this manual. With Pascal 3.0, the

Debugger is not automatically loaded at boot time. You will need to load it if you want to use it. See
the Debugger chapter for loading instructions.

Pascal Compiler 185

Modules

A module is a program fragment which can be compiled independently and later used to complete
otherwise incomplete programs. For example, you might want to define a *‘complex number” data
type and some relevant functions, then use those definitions in several programs. This section
introduces the concepts and facilities you will need to define, debug and use module libraries.

Modules, like almost everything else in Pascal, must have all their relevant features and characteris-
tics declared before use. Syntax diagrams detailing precisely the syntax of a module declaration can
be found in the HP Pascal Language Reference for Series 200 computers; an informal presentation
is more suitable for present purposes.

Module Structure
The four parts of a module are its heading, the import and export sections, and its implement part.
® The heading introduces the module and names it. The name is an ordinary Pascal identifier.
Example:
module complexmath;s

® The import part names all other modules on which the present one depends. One module
depends on another if the dependent module makes use of things exported from the imported
one: calling procedures, assigning to exported variables, or declaring variables of an exported
type. The names are separated by commas and the list ends with a semicolon:

imPport complexmathsconversionss

There is no import part if the module is independent of all others.

e The export part defines the constants, types, variables, procedures and functions which this
module will supply to any program or module importing it. Constants, types and variables are
declared just as in a program or procedure block. Procedures and functions are presented as
headings without bodies.

eXPOTt
const Pi = 3,141593
type
polar = record radiusstheta: real ends’
var

scalefactor: reals

origin: Polars
function makerolar (a: complex): pPolari
procedure setoridin (a: compPlex)’

The export part may make use of things in turn exported from other modules listed in the
import part, such as the type “complex”. Every module must have an export part.

186 Pascal Compiler

e The implement part consists of the reserved word IMPLEMENT, followed by constant, type,
variable, procedure and function declarations, followed by the word END. All the procedures
and functions whose headings were in the export part must be present in their entirety in the
implement part. The implement part may make use of things in turn exported from other
modules listed in the import part.

A module does not have to export procedures or functions, it may be used simply to create
data types. In such a case there will be nothing between the words IMPLEMENT and END.

A complete module, “‘complexmath’, is shown on the next page. It has no import part because it
depends on no other modules. (The module is also on the DOC: disc; the source is called CXMO-
DULE.TEXT.)

The import and export parts are said to define the module’s interface to other modules or prog-
rams. This interface is public: the information it contains is available to any imported of the module.

The implement part is said to be “‘private”, which means that everything between the words
IMPLEMENT and END is hidden from importers. Anything declared here is unknown outside the
module, except for procedures and functions whose headings were also included in the export part.

The private and public parts of the module are separated in this way so that its implement part can
safely be changed without altering programs or other modules which import it. This independence
of modules from programs is a key to developing software libraries. Another implication is that
modules can only be dependent on other modules, not on programs. The reason is simply that
there’s no way to import a program into a module (since programs have no export declarations).

It was stated at the outset that a module is a “‘fragment” of a program. To be more precise, a
module is a set of global (outer level) declarations which can be compiled once, then bound into a
program by an IMPORT declaration in that program.

Pascal Compiler 187

Pascal [Rev 2,0 10/19/821 CXMODULE.TEXT 19-0ct-82 09:09:35 Pade 1

1:D O module complexmathsi

2:D 1 export

3:D 1 type

4:D i complex = record

S:D 1 re: reals

G:D 1 im: reals

7:D 1 erds3

g:D 1 const

9:D 1 zero = complex [re:0.0yim:0,013

10:8

11:D 1 function esual (asb: complex): booleani

12: 1 funetion add {ash: compPlex): complexsi

13:D 1 function mul (asb: complex): compPplexi

14:D 1 funetion dud (ash: complex): complex}

15:D 1 furnetion cond (a: complex): compPlex?

16:D 1 function mad {a: complex): reali

17:D 1 function scmul (scale:ireal’ ascomplex): compPlexs
18:8

19:D 1 implement
20:D 1
21:D -32 1 furnction eaual (asb: complex): boolean?
22:C 2 begin equal := (a.re=b.,re) and (a.im=b.im) ends
23:8
24:D -32 1 furmction add (asb: complex): complexs
25:C 2 bhedin add.re := a.,re+b.red add.im = a,im+b,im endj;
26:8
27:D -32 1 furnction mul (asb: comPlex): complexs
z8:C 2 hedin
29:C 2 mulsre 1= (a,.re*b.re-a.im*b,1im) 3
30:C 2 muileim = (a.re*b,im+a,im*b.re)s
31:C 2 endi
32:8
33:D -32 1 furnction dud (asb: complex): complexi
34:D -40 2 var denom: realj
35:C 2 bedin
36:C 2 derom := sar{b.re)+sar(b,im)}
37:C 2 if denom = 0.0 then halt(-5)3i (*divide by zero*)
38:C 2 dJud.re 1= (b.re*a.,re + b,re¥a,re) / denom?’
39:C 2 dudsim 1= {(b,re*a,im - b.im*a.re) / denom}
40:C 2 ernds; .
41:8
4z2:D -16 1 function cond (a: complex): compPlexs
43:C 2 bedin conde.re = a.reid condsim = -a.im endi
44:8
45:D -16 1 furnction mag (ascomplex): reali
46:C z bedin mad := sart{sar(a.rel+sar(a.im)) end}
47:8
48:D -24 1 function scmul {(scale:real’ atcomplex): complexs
49:C et bedin
20:C 2 scmul.re := scale*a,rej
51:C 2 scmul,im 1= scale¥a.,im
S52:C 2 endi
33:8
Sd4:C 1 end, (¥complexmath¥)

No errors.

188 Pascal Compiler

Developing and Testing a Module

The Workstation environment supports a structured approach to the development and testing of
software modules. This is important because modules often become part of the system library, and
many programs may depend on them. The usual steps in the development cycle are:

® Decide what the module will do — define its functionality. Write the interface part first, specify-
ing what other modules will be needed and what things the module will export. Remember
that when the finished module is imported into a program, only this interface will be ‘‘visible”.
Figure out how a program will use the exported things to get the module to do its job.

® Decide how the module will be tested. Write a test program which will thoroughly exercise it.

e Write the implement part of the module. Embed the completed module in the test program,
and compile the two together. Leave the module inside the program until you’re satisfied with
the results.

e Extract the module from the test program. This can be done by using the Librarian to pull it out
of the compiled test program, or by separating the module’s source text with the Editor and
compiling it independently.

¢ Use the compiled module. It can be put in the current system library (which is normally the
LIBRARY file), or left as a user library which is manually linked to dependent programs, or
loaded into memory by the Permanent load command.

The following listing shows the source of CXMODULE embedded into the program called CX (also
on the DOC: disc):

Pascal [Rew 2,0 10/19/821 CXO.TEXT 19-0ct-B2 09:15:51 Pade 1

1:D O prodgram cx (listing)}

2:8

3:D 1 module complexmathi

4:D 1 expPort

5:D 1 tYyPe

G:D 1 comPlex = record

7:D 1 re: reals

8:D 1 im: reals

9:D 1 ends

10:D 1 const

11:D 1 zeroc = complex [re:0Q,0,im:0,013

12:8

13:D 1 function eaual {(asb: complex) booleans

14:D 1 function add (asb: complex) complexs

15:D 1 function mul (ash: complex): complexs

16:D 1 furction dud (a»b: complex) complexs

17:D 1 function cond (a: compPplex): complexs

18:D 1 furngtion mag (a: compPlex): reals

19:D 1 furnction scmul (scale:real’ a:comeplex): complexsi
20:8
21:D 1 impPlement
22:D 1
23:D -32 1 furmction eaual (asb: complex): booleans
24:C 2 bedgin eaual := (a.re=b.re) arnd (a,im=b.im) erndi
25:5
26:D -32 1 function add (asb: comPlex): complexi
27:C 2 bedin add.re := a.,re+b.rej add,im = asim+b.im endi
Z8:8
29:D -32 1 function mul (asb: complex): complexi
30:C 2 bedin
31:C z2 mul.re 2= (a.re*b,re-a.im*b,im) 3
32:C z mul,im 2= (a.re¥b,im+a,im*b,re)}j
33:C 2 ends

HES]

Pascal [Revu

35:D
36:D
37:C
38:C
39:C
40:C
41:C
4z:C
43:5
44:D
4s:C
46:S
47:D
ag:C
49:5
50:D

g0:C

No errors.,

-32
-40

-32
-304
-320
-324
-324

2,0

Pascal Compiler

10/19/821 CXOLTEXT 19-0ct-82 09:15:31 Pagde

RIS SURE CN R O [OV I O B

—_

-3

[

[0 0T S N B

[

—

bbb bk ek ek ek b et b

L R o B S B R R I I S I SR

function dud {asb: complex): complexi
var denom: reall

begin
deviom = sar{b,rel+sar({b,im)}
if devwom = 0,0 then halt(-5)3 (#divide by zero%)
dqud.re := {(b.re¥*a,re + b.re*a.re) / denom}
dudsim = (b.re*a.im - bh,im*a,re) / denomj

end i

function cond (a: complex): comprlexi
begin condsre = a,red cond.im = -a.im endj

function mad (a:complex): reals
bhegin mad := sart(sar(a.re)+sar(a.im)) ends

function scmul (scale:realj a:complex): complexi
bedin
scmul.re = scale*a.rei
scmuulvim 1= scale¥a.im
endi

endi (%¥complexmath*)

import complexmaths

const
Ppi = 3,1415926543
nsters = 163

gar

arb: complexi

table: arrav [1.,.nsteps+1] of compPlexi
thetasthetaster: reali

i: integderi

listing : texts

bedin
theta 1= 0,073
thetaster = Pi/(Z2¥nsteps)i
a := zeroi b := zero}l
for i := 1 to nsters+l do
bedgin
a.re = sin(thetali (*#leave im Part zero¥*)
beim 3= cos(theta)i (#leave re Part zero%)
tableli] := add(asb)3i
theta := theta + thetasteri
endj
writeln(listings’ REAL ‘y
! IMAGINARY '
/ MAGNITUDE *)
for i := 1 to nsters+l do
writeln(listings’ '
tablelil.res’ “stablelildeims’ 7
mag(tablelid))3

b

ernd.

el

189

190 Pascal Compiler

REAL IMAGINARY MAGNITUDE

9,B0171E-002 9,951B5E-001 1,00000E+000
1,95090E-001 9,8B07B5E-001 1.,00000E+000
2,90285E-001 9,56940E-001 1.00000E+000
3.82683E-001 9,238B0E-001 1.00000E+000
4,71397E-001 8,81921E-001 1,00000E+000
5.35570E-001 8,31470E-001 1,00000E+000
6.+34393E-001 7,73010E-001 1,00000E+000
7+07107E-001 7,07107E-001 1,00000E+000
7+73010E-001 B.,34393E-001 1,00000E+000
8.,31470E-001 5,55570E-001 1,00000E+000
B8.81921E-001 4,71387E-001 1,00000E+000
9,238B0E-001 3,82B83E-001 1,00000E+000
9.,356940E-001 2,90283E-001 1,00000E+000
9,8078%E-001 1,95090E-001 1.,00000E+000
9.,95185E-001 9,80171E-002 1,00000E+000

1,00000E4000 -2Z,0510E-010 1,00000FE+000

An [llustration

The accompanying listing shows the module *‘complexmath’ embedded in a test program. The test
program isn’t very thorough, since it only checks the constant “‘zero” and the “add’” and “mag”
functions.

Modules embedded in a program may be intermixed with global constant, type, and variable
declarations, but all modules must appear before any of the program’s global procedures and
functions. Usually all the modules are put first, followed by the program’s own globals. If there are
several modules, they must be ordered so that no module is imported by another (or by the
program) until it has been declared.

Notice the semicolon following the END of the module (line 56), and that the program must have
an IMPORT declaration (line 61) even though the module is physically present in the program.

Program “cx”’ can be compiled and run as shown. If you’d like to try it, invoke the Compiler by
pressing at the Main Command Level. When asked what text to compile, put the disc
labelled DOC: in a drive and answer:

DOC:Cx (ENTER
Let the Compiler put the output file on the same disc (accept the default output file).

Compiling a Module Separately

The file generated by compiling CX. TEXT is a library with two modules, the main program ‘“‘cx”
and module ‘‘complexmath’. Strictly speaking a program isn’t a module, but within a library it has
a directory entry just as if it were. You might wish to use the Librarian and see this for yourself. The
Librarian can display every detail of a code file. Had there been several modules in “‘cx”, each one
would have had a separate directory entry.

It's important to be clear about the distinction between modules and libraries. A library is a file that
contains object-code module(s); it is created by the Compiler or Assembler or Librarian. The
library’s name is its file name, which you can see with the Filer. Inside the library is a directory
naming all the modules in that file. The library directory can only be displayed by the Librarian.

Pascal Compiler

If you were satisfied at this point with the testing of ‘‘complexmath’, you could use the Librarian to
pull that one module out of the code file, and make it a user library or add it to the system library.
The Librarian chapter describes how to do this.

Another alternative is to compile the module separately. Simply use the Editor to create a text file
having only the module. Notice that when the module is compiled alone, it must be followed by a
period instead of a semicolon. The Compiler will also accept a sequence of several modules,
separated by semicolons. The last one must be followed by a period. The program listing ‘‘Com-
plex Using $SEARCH?”, below, shows the listing generated by a separate compilation.

How the Compiler Finds Library Modules

A module which has been compiled is called a “‘library module”. Library modules can be imported
by programs or other modules, because the compiled code file carries with it a description of the
module’s interface. The Compiler is able to read this description and from it determine how to
properly access everything exported by the module. (Note that modules which have been ‘‘Link-
ed” by the Librarian do not contain the module interface descriptions.)

When the Compiler processes an IMPORT declaration, it must find the modules named in the
import list and read their interface specifications. A particular search pattern is followed, which is
repeated for each module named in the list.

o If the imported module has been previously declared or imported in the source text being
compiled, the reference is to that module.

o If nomodule of that name has been found, the Compiler must search library files on mass
storage. The files to be searched may be specified by a $SEARCH$ option. See the Compiler
options section of this chapter.

o If there is no $SEARCHS$ option or the module is not found in the specified list of files, the
Compiler goes on to look in the current system library.

o [f the module still isn’t found, error 104 (undeclared identifier) is issued.

Note
The Compiler does not search libraries which have been loaded into
memory with the P-load command. Module interface specifications are
not retained with memory-resident libraries.

A module which is imported may itself import other modules, which are listed in its import section.
The Compiler must follow such a chain all the way back to its root, to a module which imports no
others. The earch pattern just described is applied recursively, to a maximum depth of ten levels.
For a restriction, see the section below on $INCLUDE files. Sometimes in following an import
chain, a module is named in more than one import list. The Compiler actually reads the interface
specification for a module just one.

If a program imports module “A”, which in turn imports module “B”, the things exported from
“B” are nevertheless hidden from the program. To make them visible, *‘B” must also be imported
into the program.

191

192 Pascal Compiler

The listing below shows program “‘cx” recompiled to search for module “‘complexmath™ in a
library called “CXMODULE” on mass storage unit #3. The second listing shows “cx” recompiled
assuming ‘‘complexmath’ has been put into the current System Library.

Pascal [Rev 2,0 10/19/821 CX.TEXT 19-0ct-B82 09:30:34 Pade 1

1:D O prodram cx (listing)j

2:8

3:D 1 $search '#3:CHMODULE’$

4:D 1 import complexmathsi

5:5

G:D 1 const

7:D 1 p1 = 3.,1415926545

8:D 1 nsters = 163

9:D 1 var

10:D -32 1 ash: comPlexs

11:0 -304 1 table: arrar [1..nsteps+1] of complexi
12:D -320 1 thetasthetaster: realj

13:D -324 1 i: inteder}i

14:0 -324 1 listing @ texts

12:8

16:C 1 besgin

17:C 1 theta = 0,01

18:C 1 thetaster 1= pi/(Z2¥nsteprs)]

19:C 1 a = zeroi b= zerol
20:C 1 for i := 1 to nsteps+1l do
21:C 2 bhegin
22:C 2 a,re := sin(theta)s (¥leave 1m Part zero%)
23:C 2 b.im := cos(theta)si (#*leave re Part zero¥)
24:C 2 tablel[il := add(ash)s
29:C 2 theta := theta + thetastep?
26:C 2 evnds
27:C 1 writeln(listing,’ REAL Ty
Z8:C 1 ’ IMAGINARY
z29:C 1 ! MAGNITUDE 7))
30:C 1 for i := 1 to nsteps+l do
31:C 2 writeln(listindgs’ 7
32 2 tablelil.rey’ ‘stableliliims” "
33:C 2 mag(tabklelil))3
34:C 1 end,

No errors.

Pascal [Reu 2.0

OO NOUA WM -
ooooononog

10:D

17:C

19:C
20:C

25:C

27:C

33:C

No errors.,

-3z
-304
-320
-3z
-324

No

107197821 CH2.TEXT

0O

—

bk pek feh ek b et b et b

R I N B R A I N I A B I R R L

program cx (listing)i

import complexmathi (¥ from svstem library %)

const
Ppi = 3,141592654%
nsters = 161
var
asb: complexi
table: array [1l..nsteps+1] of complexi
thetasthetaster: reall
it inteders
listing 3 texts

hedin
theta 1= 0,03
thetaster 1= Pi/(Z%nsteps) i
a := zerol b 1= zeros
for i = 1 to nsteps+l do
bedin
a.re := sin(theta)s (#leave im Part zero*)
bvim := cos(theta)} (#leave re Part zero%*)
tableli] := add(asb)i
theta := theta + thetasteri
end i
writeln(listings’ REAL

k]

)
‘ IMAGINARY '

! MAGNITUDE)
for i 1= 1 to nsteps+l do

writeln(listinds’ ‘»
tablelilsres’ “stablelil.sims’ '
mag(tableli]))3
end,
warningds,

How the Loader Finds Library Modules

When the Compiler processes an import declaration, it does not copy, or in any other way bind the
library module into the program being compiled. Instead it emits reference information (called
REF’s) which enables the loader or linker to make the required connections later. Usually REF’s are
satisfied (hooked up to the library module) at the last possible moment: when you Run the

program.

Pascal Compiler

19-0ct-82 09:06:14 Pade 1

A compiled program contains no record of where the Compiler found any imported modules. The
loader has a search pattern it uses to find imported things the program needs:

e First, the file being loaded is searched. There may be modules in it which were compiled at the
same time as the program.

® Then memory-resident libraries are searched. The memory-resident libraries are those you
have loaded with the P command, the contents of INITLIB (which is automatically loaded at
boot time), and the modules of the Operating System itself. The order of search is most-
recently-loaded first.

e Finally, the current System Libraryis searched. If a required module is in the System Library, it
will be loaded with the program and will remain in memory until a different program is

executed.

e If there are still unresolved references, the loader reports them on the CRT. The program won’t
run. Control is returned to the Main Command Level.

193

194 Pascal Compiler

If your program only imports from the System Library, everything is taken care of automatically.
This is the most common case. If the program imports from user libraries via the $SEARCH$
option, you must help out the loader in one of three ways.:

® Use the P-load command to load copies of the libraries into memory before running the
program. Do this just once, because the loader does not check to see if modules have already
been loaded! Memory-resident libraries stay there until you re-boot.

® Use the Librarian to make a new library containing the compiled program and any modules it
needs. This new library is an unlinked, executable program. It will automatically be linked
when it is loaded.

® Use the Librarian to link the necessary modules to the program. The resulting library is a
linked, executable program. It will probably still have some unresolved references (for instance
to the system read and write routines), which will be resolved at load time.

A Subtle Point

The loader doesn’t search for modules, it searches for external names. Each procedure or function
exported has an external name, as do most structured constants. A single name is used for all the
variables a module exports; it is actually the name of a place in memory where storage for the
variables will be allocated. Certain things, such as types and simple constants, are only useful at
compile time and so have no external name.

If two modules which are loaded define the same load-time name, the most recently loaded copy
overrides the older one. Generally this makes no difference, because external names created by the
Compiler identify the module where the name originated. However, some module names are used
by the Operating System. You should avoid using these names from your own modules unless you
intend to override the name of a system entry point. These names are listed in the Technical
Reference Appendix.

$INCLUDE Files

The source text of a module or program can be broken up into several text files which are edited
separately but compiled as a group. The $INCLUDE option tells the Compiler to insert the Pascal
source of another file into the one it is presently compiling.

prodram showinclude (inPutroutput)s
finclude ‘MYVOL:DECLARS'%

$include ‘SYSUOL:BODY

end.

If the required volume is not on-line when needed, the Compiler pauses and prompts you to insert
the proper volume.

Miscellaneous

® An included file may in turn include another file. This “nesting” is allowed to a maximum
depth of 10.

® Importing a library module is a form of file inclusion, and counts against the maximum
allowable depth of 10 while the import declaration is being processed.

e [f the imported module has an import declaration in its own interface, the Compiler will follow
the chain and find those module interfaces too. This is another form of nested file inclusion.

Pascal Compiler

What Can Go Wrong?

This section discusses some problems which may occur when using the Compiler, and how to solve
them.

Can’t Run the Compiler
1. If the system reports, Canmiot oren ‘CMP:COMPILER’, the volume with the Com-
piler is not online. You may have removed the volume and not put it back or changed it
with the What command. If the Compiler wasn’t found when the system booted, you are
expected to put the CMP: disc (which contains the Compiler) on-line.

2. Ifthe system reports, Carnot load ‘COMPILER ’, either the disc medium is bad, or
not enough memory is installed in the Computer to run the Compiler. It is desirable to
have at least 393K bytes; the system is normally sold with at least 524K bytes.

Errors 900 thru 908

During compilation, three files are written by the Compiler: the code file, which is the one you want,
and the REF and DEF files. The latter two are temporary working storage for linkage information
which is appended to the code file if the compilation terminates normally. All three of these files are
normally opened on the same volume (the volume to which you directed the code file).

Each of these files is subject to three classes of error:

® Error in opening the file.
o Insufficient space to open the file.
o File fills up before compilation finishes.

An error in opening the file usually means the volume is not online. It can also indicate that the
volume’s directory is full.

The amount of space allocated to the code file is usually half of the largest free area on the volume,
with the potential to expand to the second half of that area if needed. If you get errors 900, 903, or
906 you need to make more room on the volume to which the code file was directed, or use a
different volume.

The REF file by default is opened with 30 blocks of disk space on the same volume as the code file.
A Compiler option at the beginning of the source program can change the size and the volume
selected for REF. There’s no simple rule which gives the “‘right”’ size for the REF file. If the file fills
up (error 907), make it bigger in proportion to the amount of program that remained to compile
when the error occurred.

$REF 50% Allocate 50 blocks
$REF 'CHARLIE:'$ Put it on volume CHARLIE
$REF ‘CHARLIE:’s REF 50% Put it on CHARLIE and

allocate 50 blocks

195

196 Pascal Compiler

Exactly analogous remarks hold for the DEF file, except that its default size is 10 blocks and the
Compiler option is DEF .

Errors When Importing Library Modules

1. Syntax errors in the interface of an imported library module. This usually indicates that the
library module itself tried to import some other module which was not found by the Compil-
er’s search algorithm.

2. Errors 608, 610: Include or import nesting too deep. If module “A” imports “B”, which
imports “C” and so forth, the Compiler must follow the chain to its end. The chain can only
be 10 imports deep. Since the same file handling mechanism is also used to process
$INCLUDEC files, the combined limit on import and inclusion nesting is 10 deep.

3. Error 613: Imported module does not have interface text. If the library has been linked by the
Librarian, the interface specification has been removed. Also, a main program looks internal-
ly like a module; but it has no interface text.

Not Enough Memory

If the Compiler generates error -2 “Not Enough Memory”, there isn’t enough room in memory to
compile the program. You can watch the numbers which appear on the screen in square brackets
as the compilation proceeds -- they show approximately how much memory is left. There are two
primary reasons for running out of memory during a compilation. One of them is large procedure
bodies, and the other is P-loaded files.

Large Procedure Bodies

When the Compiler processes a procedure, the entire procedure (declarations and body) is scan-
ned. An internal representation of the procedure, called a “tree”, is built. This tree is not complete
until the scanner reaches the end of the procedure, and only then does code generation begin. The
tree form takes a lot of storage, particularly the statements making up the body. If you write a
procedure whose body is ten pages long, the Compiler is very likely to run out of memory. The
moral is that you should keep your procedures reasonably short. A good guideline is that no
procedure should be longer than a page or two.

P-loaded Files

If you've Permanent-loaded a lot of libraries or programs, or space has been allocated to a
memory-resident mass storage volume, you can reboot the system to recover the memory, and try
again.

Insufficient Space for Global Variables

You may discover, either at compile time or at run time, that there isn’t sufficient space for the
global variables of your program. If this happens, please refer to “Implementation Restrictions’” in
this chapter, which explains the limitations and what to do if you exceed them.

Errors 403 thru 409

These errors should never be reported. They indicate a malfunction in the Compiler itself. If this
ever happens, please show the program which causes it to your HP field support contact.

Pascal Compiler

Compiler Options

Compiler options affect the code emitted by the Compiler. For instance, the $DEBUG ON$ option
causes the Compiler to emit a TRAP instruction after the object code for each Pascal statement,
allowing you to single-step the program.

Sometimes there are restrictions on where an option may appear:

Location Restrictions

Anywhere Indicates that the location of the option in the file is irrelevant.

At front Applies to entire source file; must appear before the first “token’ in the source
file (before PROGRAM, or before MODULE if compiling a list of modules).

Not in body Applies to a whole procedure or function; can’t appear between BEGIN and
END. Good practice to put these options immediately before the word BEGIN
or the procedure heading.

Statement Can be applied on a statement-by-statement basis or to a group of statements,
by enabling before and disabling after the statement(s) of interest.

Special As explained under the particular option.

If an option appears in the interface (import or export) part of a module, it will have effect as the
module is compiled. However, the option itself will not become part of the interface specification in
the compiled module’s object code.

197

198 Pascal Compiler

ALIAS

Default: External name = Procedure Name
Location: Special, See Below

This Compiler option causes a name, other than the name used in the Pascal procedure or function
declaration, to be used by the loader.

external
(&)~)~ 920

Item | Description/Default | Range Restrictions
external name string 1 to 80
ASCII Characters
Semantics
The string parameter specifies the external name for the procedure in whose header the option
appears.
Example:

procedure $alias ‘charlie’$s P (i: inteder): externals

Within the program, calls use the name “p”’; but the loader will link to a physical routine called
“charlie”.

Should appear between the keywords PROCEDURE or FUNCTION and the routine’s identi-
fier.

Pascal Compiler 199

ANSI

Default: OFF
Location: At Front

This Compiler option selects whether an error message is to be emitted for use of any feature of HP
Standard Pascal not contained in ANSI/ISO Standard Pascal.

om’g.o

Semantics
“ANSI” is interpreted as “ANSI ON”".

ON causes error messages to be issued for use of any feature of HP Standard Pascal which is not
part of ANSI/ISO Standard Pascal.

OFF suppresses the error messages.

Example:
fansi ons

200 Pascal Compiler

CALLABS

Default: ON
Location: Statement

This Compiler option determines whether 16-bit relative or 32-bit absolute jumps are to be gener-
ated by the Compiler.

O CTDENEDES0
LG

Semantics
“CALLABS” is interpreted as “CALLABS ON".

ON specifies that 32-bit absolute jumps will be emitted for all forward and external procedure calls.
OFF specifies 16-bit PC-relative jumps.
Allowed on a statement-by-statement basis.

Example:
$callabs off%

Pascal Compiler 201

CODE

Default: ON
Location: Not in Body

This Compiler option is used to control whether a CODE file will be generated by the Compiler.

O~ (OO
Lo

Semantics
“CODE” is interpreted as “CODE ON".

ON specifies that a code file will be generated.

Example:
$code of f$

202 Pascal Compiler

CODE_OFFSETS

Default: OFF
Location: Not in Body

This Compiler option controls the inclusion of program counter offsets in the compiler listing.

o CODE_.OFFSETS lll o

Semantics
“CODE_OFFSETS"” is interpreted as “CODE_OFFSETS ON”.

ON specifies that line-number/program-counter pairs will be printed for each executable statement
listed. This can be applied on a procedure-by-procedure basis.

Pascal Compiler

COPYRIGHT

Default: Not Applicable
Location: Anywhere

This Compiler option is provided for inclusion of copyright information.

copyright
ONCED=O O~G

Item I Description/Default | Range Restrictions

copyright string 110 80

message ASCII Characters
Semantics

The string parameter is placed in the object file as the owner of the copyright. If more than one
COPYRIGHT option is included, the last one is effective.

Example:
$corPyridht ‘Hewlett Packard Companys 1981°%

203

204 Pascal Compiler

DEBUG

Default: OFF
Location: Not in Body

This Compiler option controls whether the code produced by the Compiler contains the additional
information necessary for full use of the Debugger system.

0@’3’0

Semantics
“DEBUG” is interpreted as “DEBUG ON”

“DEBUG ON” will cause debugging instructions to be emitted for the procedure bodies following
it. May be applied on a procedure-by-procedure basis.

Example:
procedure buggys
var i: intederi
$debug on%
bhedin
ends’
$debug offé

Pascal Compiler

DEF

Default: 10 records on same volume as code output
Location: At Front

This Compiler option allows the user to change the size and location of the temporary Compiler file
named “.DEF”.

;I def file | .
0 DEF I size | i (s) 3
def file
volume id

Item Description/Default Range Restrictions

def file size integer constant less than 32767

def file string valid volume id (see

volume id glossary)
Semantics

If the parameter is a string, it specifies the volume where a temporary Compiler file called ““.DEF”,
which holds external definitions, will be stored. If the parameter is a number, it specifies how many
logical records will be allocated for the DEEF file. See ‘“What Can Go Wrong, Errors 900 to 908",

Examples:
fdef S5O0%
sdef ‘JunKuvol:’$
$def ‘dJunkvol:’y def 30%

205

206 Pascal Compiler

HEAP_DISPOSE

Default: OFF
Location: At Front

This Compiler option enables and disables ‘‘garbage collection’ in the heap.

HEAP _DISPOSE

Semantics
“HEAP_DISPOSE" is interpreted as ‘‘HEAP_DISPOSE ON”

ON indicates that DISPOSE allows disposed objects to be reused.

OFF does not recycle disposed objects. If enabled, this option must appear at the front of the main
program.

Example:
thear_disrose on%
prodram recycles

LR

bedin

dispose(p)i (#freeurpcell*)

new(p)s (¥probably dets same cell back*)
end.

The HEAP_DISPOSE option must be the same (either ON or OFF) in the program and all modules
imported by the program. Erroneous results may occur if those declarations don’t agree, because
there is no way for the Compiler to check on which option other modules have used.

Pascal Compiler

FLOAT _HDW

Default: OFF
Location: Not in body

This option enables and disables the use of floating-point hardware.

Semantics

An optional floating-point hardware board (HP 98635) is available for Series 200 Computers to
increase the execution speed of floating-point math programs.

“FLOAT_HDW” is interpreted as “FLOAT_HDW ON”

ON instructs the Compiler to generate accesses to hardware for most floating-point operations. If
the hardware does not exist when the program is executed, an error will result.

OFF tells the Compiler to generate calls to libraries for all floating-point operations.

TEST causes the Compiler to generate both hardware accesses and library calls. The Compiler
automatically includes code to test for the presence of floating-point hardware. At execution time, if
the test succeeds, the hardware accesses are used, otherwise the library calls are used.

The operations that use the hardware include: addition, subtraction, multiplication, division, nega-
tion, and s a r function. All other math functions call library routines. There are libraries that access
the floating-point hardware. Hardware can also be used by any operation that converts an integer
to a real or longreal. The hardware is not used by operations that convert reals or longreals into
integers.

Example
$float_hdw test$

207

208 Pascal Compiler

IF

This Compiler option allows conditional compilation.

F boolean conditional
expression text

Default: Not Applicable
Location: Anywhere

[tem Description/Default Restrictions

boolean expression that evaluates to either TRUE or FALSE may only contain
expression compile time constants
conditional source to be conditionally

text compiled

If the expression evaluates to FALSE, then text following the option is skipped up to the next

END option.

If the boolean expression evaluates to TRUE, then the text following the option is compiled

normally.
IF-END option blocks may not be nested.

String constants may not be used.

Example:
const fancy = trues
limit = 103
gsize = 893

L

$if fancy and ((size+1)<limit)é$

PPN (¥ this will be sKirprped %)
$end%
$if FALSES$

vee{%® this will also be sKirped#*)
dend$

Pascal Compiler 209

INCLUDE

Default: Not Applicable
Location: Anywhere

This Compiler option allows text from another file to be included in the compilation process.

file
ORCTDNO O-®

Range
Item Description/Default Restrictions
file specifier string any valid file specifier

(see Glossary)

The string parameter names a file which contains Pascal source to be included at the current
position in the program. Included code may contain additional INCLUDE options (nesting level is
10). The remainder of the line which contains this option must be blank except for the closing $.

Example:
prodram inclusive?
$include ‘source:declars’$
$include ‘source:body’$
erd,

210 Pascal Compiler

IOCHECK

Default: ON
Location: Statement

This Compiler option enables and disables error checking following calls to system I/O routines.

IOCHECK

Semantics
“IOCHECK?” is interpreted as “IOCHECK ON”’

ON specifies that error checks will be emitted following calls on system /O routines such as RESET,
REWRITE, READ, WRITE. Can be used in conjunction with the standard function IORESULT if
UCSD or SYSPROG language features have been enabled. Allowed on a statement-by-statement
basis.

OFF specifies that no error will be reported in case of failure.

Example:
fucsd$
$iocheck off%
reset(fs’datafile’) 3
$iocheck ong$
if ioresult <* O then writeln(’I0 error’)s

Pascal Compiler

LINENUM

Default: Not Applicable
Location: Anywhere

This Compiler option allows the user to establish an arbitrary line number value.

—»-@——-(LINENUM}—P-I line number

Item | Description/Default | Range Restrictions

line number integer numeric constant ' 0..65535

Semantics
The integer parameter becomes the current line number (for listing and debugging purposes).

Example:
$linenum 20000%

211

212 Pascal Compiler

LINES

Default: 60 lines per page
Location: Anywhere

This Compiler option allows the user to specify the number of lines-per-page on the Compiler
listing. 2000000 lines-per-page suppresses autopagination.

lines per
O~Com 5 O

Item | Description/Default | Range Restrictions
integer numeric constant I 20 thru MAXINT

lines per page

Example:
$lines S55¢%

$lines 2000000% (*suppress autoradgination®)

Pascal Compiler

LIST

Default: ON to PRINTER:
Location: Anywhere

This Compiler option controls whether or not a listing is being generated, and to where it will be
directed.

(s (O st OO

Item | Description/Default I Range Restrictions

file specifier string any valid file specifier
(see glossary)

Semantics
“LIST” is interpreted as “LIST ON”.

LIST with a file specifier specifies that the file is to receive the compilation listing.
LIST OFF suppresses listing.

LIST ON resumes listing. No listing will be produced at all, regardless of this option, unless
requested by the operator when the Compiler is invoked.

Examples:
$list ‘myvol:Keerplist.text’%$
$list ‘printer:’%$
$list offs

213

214 Pascal Compiler

OVFLCHECK

Default: ON
Location: Statement-by-statement

This Compiler option gives the user some control over overflow checks on arithmetic operations.

ONTESNEPSNO
Lo

Semantics
“OVFLCHECK?” is interpreted as “OVFLCHECK ON”

ON specifies that overflow checks will be emitted for all in-line arithmetic operations.

OFF does not suppress all checks; they will still be made for 32-bit integer DIV, MOD, and
multiplication.

Example:
$ouflcheck off%

Pascal Compiler 215

PAGE

Default: Not Applicable
Location: Anywhere

This Compiler option causes a formfeed to be sent to the listing file if compilation listing is enabled.

Opa @220

Example:
$rade$

216 Pascal Compiler

PAGEWIDTH

Default: 120
Location: Anywhere

This Compiler option allows the user to specify the width of the compilation listing.

characters
—’@—"QAGEWIDTPD—D-I parind

Item | Description/Default | Range Restrictions
characters per integer numeric constant 80 thru 132
line

Semantics

The integer parameter specifies the number of characters in a printer line.

Example:
$radewidth BO%

Pascal Compiler 217

PARTIAL_EVAL

Default: OFF
Location: Statement-by-statement

o PARTIAL_EVAL Il' o

Semantics
“PARTIAL_EVAL” is interpreted as “‘PARTIAL_EVAL ON”’.

ON suppresses the evaluation of the right operand of the AND operator when the left operand
is FALSE. The right operand will not be evaluated for OR if the left operand is TRUE.

OFF causes all operands in logical operations to be evaluated regardless of the condition of any
other operands.

Example:
$rpartial.eval on%
while (p<xnil) and (P ",count>0) do

P 1= P . 1links

218 Pascal Compiler

RANGE

Default: ON
Location: Statement-by-statement

This Compiler option enables and disables run-time-checks for range errors.

Semantics
“RANGE" is interpreted as “‘RANGE ON"’.

ON specifies that run time checks will be emitted for array and case indexing, subrange assign-
ment, and pointer dereferencing.

Example:
var a: arrav[D1l.,.+.10]1 of inteder:
iz inteder:
+ ¢+ 3
i o:= 113
$rande off4%$
alil 2= 03 (* invalid index not caudht! %)

Default:

30 records on same volume as code output

Location: At Front

Pascal Compiler

REF

This Compiler option allows the user to change the size and location of the temporary Compiler file
named “.REF”.

ref file
size
ref file
volume id

Range Restrictions

Item Description/Default
ref file size integer numeric constant
ref file string
volume id
Semantics

less than 32767

valid volume id (see
glossary)

If the parameter is a string, it specifies the volume where a temporary Compiler file called
“.REF”’, which holds external references, will be stored. If the parameter is a number, it
specifies how many logical records will be allocated for the REF file. See ““What Can Go Wrong,
Errors 900 to 908",

Examples:

$ref
$ref
tref

20%
TJUNKVOL: ' %
CJUNKRYOL: s ref 350%

219

220 Pascal Compiler

SAVE_CONST

Default: ON
Location: Anywhere

This Compiler option controls whether the name of a structured constant may be used by other
structured constants.

SAVE..CONST

Semantics
“SAVE_CONST" is interpreted as *“SAVE_CONST ON"".

ON specifies that compile-time storage for the value of each structured constant will be retained
for the scope of the constant’s name (so that other structured constants may use the name).

OFF specifies that storage will be deallocated after code is generated for the structured con-

stant.

Example:
$csave_const off$
tyPe ary = array [1.,.100]1 of inteders
const acon = ary L[343,43691 v+ vy 13

(*big constants takKe lots of compile-~time
memory*)

Pascal Compiler

SEARCH

Default: Not Applicable
Location: Anywhere

This Compiler option is used to specify files to be used to satisfy IMPORT declarations.

()
—/
® O (O—~®
Item | Description/Default | Range Restrictions
file specifier string any valid file specifier

(see Glossary)

Semantics

Each string specifies a file which may be used to satisfy IMPORT declarations. Files will be
searched in the order given. The current system library is always searched last. A maximum of 9
files may be listed.

Multiple SEARCH options are allowed; for instance, you may want to use one for each import
declaration. Note that only the last one encountered during compilation will be in effect for any
import statement (i.e., these options are not cumulative).

Example:
$search ‘FIRSTFILE''SECONDFILE %

221

222 Pascal Compiler

SEARCH _SIZE

Default: 10 files
Location: At front

This Compiler option allows you to increase the number of external files you may SEARCH
during a module’s compilation.

SEARCH_SIZE)——I Jpumoer

Item I Description/Default | R e?t?irgt;ieons
number of files I integer numeric constant | less than 32767
Semantics

When compiling a Pascal module, it is sometimes desirable to import another module from
another file. To import a module from another file, the SEARCH option is used to identify the
file. Up to ten SEARCH options may be given unless the SEARCH_SIZE options is given. The

SEARCH_SIZE option allows you to SEARCH up to 32,766 external files for imported mod-
ules.

Example:
$search_size 30%

Pascal Compiler

STACKCHECK

Default: ON
Location: Not in Body

This Compiler option enables and disables stack overflow checks.

STACKCHECK

Semantics
“STACKCHECK” is interpreted as “STACKCHECK ON”’.

ON specifies that stack overflow checks will be generated at procedure entry. It is very danger-
ous to turn overflow checks off! Obscure and unreported errors may result.

Example:
$stackchecK off%$
procedure unsafe;s
var

mav_smash_hear: arravy [1,.3001 of inteders
bedin ++4 ends

223

224 Pascal Compiler

SWITCH_STRPOS

Default: Off
Location: At front

This Compiler option reverses the positions of the parameters of the STRPOS function.

O LD =0

Semantics

When this Compiler option is used, the exprected order of the parameters is that of the HP
standard. In Series 200 Pascal (like UCSD’s POS function), the STRPOS function expects the
first string parameter to be the search pattern and the second string parameter to be the source
string in which the search takes place. Later the HP standard was established with the order of
the parameters reversed. If $WARN OFF$ is not in effect, then the Compiler issues a harmless
warning that you are not conforming to the standard. If you wish to conform to the standard,
give the SWITCH_STRPOS option in your program.

Example:
$switch_strros®

Pascal Compiler 225

SYSPROG

Default: System Programming Extensions not enabled
Location: At Front

This Compiler option makes available some language extensions which are useful in systems
programming applications. See ‘‘System Programming Language Features’ in this chapter.

o SYSPROG o

Semantics .
$SYSPROGS is interpreted as $SYSPROG ON$

Example:
$svysProds
Program machinederendent’

+ 4

226 Pascal Compiler

TABLES

Default: OFF
Location: Not in Body

This Compiler option allows the user to turn on and off the listing of symbol tables.

0'9‘0
(o)

Semantics
“TABLES” is interpreted as “ TABLES ON”

ON specifies that symbol table information will be printed following the listing of each proce-
dure. This is useful for very low-level debugging.

Example:
$tablecs$
procedure hasabug (var Pz inteder):
uar

LI N §

Pascal Compiler 227

UCSD

Default: UCSD not enabled
Location: At Front

This Compiler option allows the compiler to accept most UCSD Pascal language extensions.
See the subsequent “‘Converting UCSD Pascal’ section later in this chapter.

O~E)~®

Example:
Fucsd$
prodram funnvios
var
f: files (¥ no tvrpe specified! %)
bedgin
unitread(B8rary80,10)3
end,

228 Pascal Compiler

WARN

Default: ON
Location: At Front

This option allows the user to suppress the generation of compiler warning messages.

0@0

Semantics
“Warn” is interpreted as “WARN ON”’ and compiler warnings will be issued.

Example
$warn off%

Pascal Compiler

System Programming Language Extensions

Eight extensions to HP Pascal have been provided to support machine-dependent programming
and give users better control over (or access to) the hardware. These extensions may be used in any
compilation which includes the $SYSPROG ONS$ option at the beginning of the text.

The extensions may not be supported by other HP Pascal implementations. The Compiler displays
a warning message at the end of compilation when they are enabled (unless $WARN OFF#$ is
used).

Absolute Addressing of Variables

A variable may be declared as located at an absolute or symbolically named address:

var iorport [416B0001: char:
assemblysymbol [‘asm_.external_name’l: inteders

Each variable named in a declaration may be followed by a bracketed address specifier. An
integer constant specifier gives the absolute address of the variable; this is useful for addressing
IO interface hardware. A quoted string literal gives the name of a load-time symbol which will
be taken as the location of the variable; such a symbol must be defined (DEFed) by an
assembly-language module which will be loaded with the program.

Error Trapping and Simulation

The TRY-RECOVER statement and the standard function ESCAPECODE have been added to
allow programmatic trapping of errors. The standard procedure ESCAPE has been added to
allow the generation of soft (simulated) errors.

Try
fstatement> 3
fstatement> 3
LK N J
{statement
recouer
fstatement >

When TRY is executed, certain information about the state of the program is recorded in a
marker called the recover-block, which is pushed on the program’s stack. The recover-block
includes the location of the corresponding RECOVER statement, the height of the program
stack, and the location of the previous recover-block if one is active. The address of the
recover-block is saved, then the statements following TRY are executed in sequence. If none of
them causes an error, the RECOVER is reached, its statement is skipped, and the recover-block
is popped off the stack.

But if an error occurs, the stack is restored to the state indicated by the most recent recover-
block. Files are closed, and other cleanup takes place during this process. If the TRY was itself
nested within another one, or within procedures called while a TRY was active, that previous
recover-block becomes the active one. Then the statement following RECOVER is executed.
Thus the nesting of TRYs is dynamic, according to calling sequence, not statically structured
like nonlocal goto’s which can only reach labels declared in containing scopes.

229

230 Pascal Compiler

The recovery process does not “‘undo’ the computational effects of statements executed

between TRY and the error. The error simply aborts the computation, and the program con-
tinues with the RECOVER statement.

When an error has been caught, the function ESCAPECODE can be called to get the number of
the error. ESCAPECODE has no parameters. It returns an integer error number selected from
the error code table. System error numbers are always negative.

The programmer can simulate errors by calling the standard procedure ESCAPE(n), which sets
the error code to n and starts the error sequence. By convention, programmed errors have
numbers greater than zero. If an ESCAPE is not caught by a recover-block within the program,
it will be reported as an error by the Operating System. Negative values are reported as
standard system error messages, and positive values are reported as a halt code value. Note
that HALT(n) is exactly the same as ESCAPE(n).

TRY-RECOVER statements are usually structured in the following ‘‘canonical’” fashion:

try
L 2K IR I
recouver
if escapecode = (whatever vouwant tocatch)
then
bedin
{recovery sequence’
end
else

escarel{escaprecode) s

This has the effect of ensuring that errors you don’t want to handle get passed on out to the
next recover-block, and eventually to the system.- All programs which are executed are first
surrounded by the Command interpreter with a try-recover sequence. The recovery action for
the system is to display an error message.

Determining the Size of Variables and Types

The size (in bytes) of a type or variable can be determined by the SIZEOF function. This also is
enabled by the $UCSD$ directive.

sizeof(variable):
sireof(tvyrPename)

1
N

If the variable or type is a record with variants, an optional list of tagfield constants may follow
the parameter. This works like the standard Pascal procedure NEW:

n = sizeoff{uvarrecstrueshlue);

SIZEOF is not really a function, although it looks like one; it is actually a form of compile-time
constant.

Pascal Compiler 231

Relaxed Typechecking of VAR Parameters

The ANYVAR parameter specifier in a function or procedure heading relaxes type compatibility
checking when the routine is called. This is sometimes useful to allow libraries to act on a
general class of objects. For instance an [/O routine may be able to enter or output an array of
arbitrary size.

tyre

buffer = array [O.,maxintl of charsi
var

al: array [2.+.,501 of char}

a2: array [0.,991 of chari

procedure output_hpib(anvvar arv:bufferi loboundshibound:inteder) s

RN

outeput_hepib(al »2,50)3

output_hpib (a2 0,99)3

ANYVAR parameters are passed by reference, not by value; that is, the address of the variable
is passed. Within the procedure, the variable is treated as being of the type specified in the
heading.

This can be very dangerous!

For instance, if an array of 10 elements is passed as an ANYVAR paramter which was declared
to be an array of 100 elements, an error will very likely occur. The called routine has no way to
know what you actually passed, except perhaps by means of other parameters as in the
example above. ANYVAR should only be used when it’'s absolutely required, since it defeats
the Compiler’s normal type safety rules.

Programs calling routines with ANYVAR parameters should be very thoroughly debugged.
Careless use of this feature can crash your system.

232 Pascal Compiler

The ANYPTR Type

Another way to defeat type checking is with the non-standard type ANYPTR. This is a pointer
type which is assigment-compatible with all other pointers, just like the constant NIL. However,
variables of type ANYPTR are not bound to a base type, so they can’t be dereferenced. They
may only be assigned or compared to other pointers. Passing as a value parameter is a form of

assignment.
tvre
Pl = “inteder:
PZ = “record
fisf2: reals
ernds
var
ulsula: pli uwZr P23
anvuv: anvyePtri
which: (tvprpelstypre2)i
bedgin
new(uwl)s3 new{uz) i
e
if v+ then
bedin anvy 1= ulj which = trrel erd
else
begin anvy = u2i which = tvpe2 endj

e
if which = tvepel then
bedin
vla 1= anvusi
vla® = wla™ + 13
endji
ends’

This can be very dangerous!

The Compiler has no way to know if ANYPTR tricks were used to put a value into a normal
pointer. If a pointer type which is bound to a small object has its value tricked into a pointer
bound to a large object, subsequent assignment statements which dereference the tricked
pointer may destroy the contents of adjacent memory locations.

Careless use of ANYPTR can crash your system. Programs using this feature must be very
thoroughly debugged.

Determining the Absolute Address of a Variable

p 1= addr{variable)s

p := addr{variablesoffset)i

The ADDR function returns the address of a variable in memory as a value of type ANYPTR. It
accepts, as an optional second parameter, an integer ‘‘offset’” expression which will be added to
the address; this has the effect of pointing ‘‘offset’” bytes away from where the variable begins
in memory. ADDR is primarily used for building or scanning data structures whose shapes are
defined at run-time rather than by normal Pascal declarations.

The ADDR function is very dangerous!
It has the same dangers described above for ANYPTRSs, in addition to some of its own. Use of

the “‘offset’” can produce a pointer to almost anywhere, with concommitant dangers to the
integrity of system memory.

Pascal Compiler

Never use ADDR to create pointers to the local variables of a procedure or function. Storage for
local variables is recovered when the routine exits, so the value returned by ADDR is
ephemeral.

Careless use of the pointers returned by ADDR can crash your system. Programs using this
feature must be very carefully debugged.

Procedure Variables and the Standa;rd Procedure CALL

Sometimes it is desirable to store in a variable the name of a procedure, and then later to call that
procedure. For instance, the system ‘“‘Unittable’ is an array which contains the name of the driver
to be called to perform IO on each logical volume.

A variable of this sort is called a “‘procedure variable’”’. The “‘type’’ of a procedure variable is a
description of the parameter list it requires. That is, a procedure variable is bound to a particular
procedure heading.

tvype Procvar = procedure (orPtinteder)]

var P: Procuvarsi

procedure a(orPiinteder) s {identically structured parameter list?

o

P 1= 9]} {p dets the name of aj in effect P Points to al
call(psi)s {name of proc variable: then aPPropriate pParameter listl}

A procedure variable is “‘called”” by the standard procedure CALL, which takes the procedure
variable as its first parameter, and a further list of parameters just as they would be passed to a
real procedure having the corresponding specification.

It is not possible to create a ‘‘function variable’’, that is, a variable which can hold the name of a
function.

Don’t assign the name of an inner (non-global) procedure to a procedure variable which isn’t
declared in the same block as the procedure being assigned. Such a variable might be called
later, after exiting the scope in which the procedure was declared. The appropriate static link
would be missing, yielding unpredictable results. See ‘‘How Pascal Programs Use the Stack’’, at
the end of this chapter, for an explanation of static links.

The IORESULT Function

Normally the Compiler emits instructions after each IO statement to verify that the transaction
completed properly. If it fails, the program is terminated with an error report.

It is possible to trap IO errors programmatically, using the TRY-RECOVER statement. The
system function IORESULT can then be called to discover what went wrong with the transac-
tion.

233

234 Pascal Compiler

IOchecks and IOresults

Normally the Compiler emits instructions after each 10O transaction to verify that the transaction
completed properly. If it didn’t, the program is terminated with an error report. The error code
for all IO errors is -10.

You may wish to intercept IO errors programmatically rather than have them terminate the prog-
ram. This can be done two different ways. The program or module must be compiled with the
$SYSPROG$ or $UCSD$ Compiler directive at the front of the source text. These directives both
make available a system function called IORESULT which returns an integer value reporting on the
success of the most recent IO transaction. A result of zero indicates a successful transaction; other
values are given in the Error Message appendix.

Method 1. This method is the preferred one. Compile the program or module with
$SYSPROGS$ enabled, and use the TRY-RECOVER statement to trap the errors.

$svsProgs$
pProdram trapmethod (inPutsoutpPut)i

var
mame: strindlBOIS
fi texts
ior: inteders
begin
rereat
Wwrite(/'Open what file 7 703
readln(name)
try
reset(fyname+’ stext’)3
ior = QfF (#if we get heres it didn’t fail#)
recover
if escapecode = -10 then (#*it ‘s an I0 error*)
begin
igr := ioresult? (¥save iti will be affected by write stmt#*)
writeln(’ Can’’t orPen 1it. I0result ='yior)i
end
else
escare(escarecode)’
until ior = 03
erd,

In this case, if the file RESET fails, then the system will set ESCAPECODE to -10 and then execute
the RECOVER block. IORESULT will then return the actual I/O error code. Note that IORESULT
reports on the last /O operation attempted; therefore, a variable (ior) was used to store the value
before executing the WRITELN statement.

Method 2. This method is used in UCSD Pascal programs
suppress the error checks normally emitted by the Compiler.

fucsd$
Pprodram ucsdmethod (inpPutsoutpPut)i
var
name: string[BO01}
f: texts
ior: intederi
begin
repeat
write(/'Open what file
readln(rname)}
$iocheck off$
reset(fsmame+’ stext’)i

T

$iocheck on%
ior 1= ioresults (#save ity will be affected by wr
if dor <% O then
writeln(’ Can’‘t orPen it. IDresult ='sior)i
until ior = 03

end,

Pascal Compiler

. For it to work, you must also

ite stmt#*)

Note that $IOCHECK OFF$ before the RESET statement inhibits the setting of ESCAPECODE
during this statement. IORESULT will still be set correctly, however.

235

236 Pascal Compiler

Heap Management

The “heap” is the area of memory from which so-called dynamic variables are allocated by the
standard procedure NEW. When a program begins running, it has available one area of mem-
ory for data. The program’s stack begins at the high-address end of this area and grows
downward; the heap begins at the low-address end and grows upward. If the stack and heap
collide, a Stack Overflow error (escapecode —2) is reported.

Two disciplines are available for the recovery of heap variables after they become unwanted:
the MARK/RELEASE method, and the DISPOSE method. The first is simpler and faster, the
second more general.

MARK and RELEASE

This method uses two standard procedures to manage the heap in a purely stack-like fashion.
MARK is called to set a pointer to the next available byte at the top of the heap. Subsequent
calls to NEW will all take space from above this point. When the program finishes with all the
variables above the mark, RELEASE is called to move the top of the heap (the next available
space) back to the value saved by MARK.

Pprogram marKreleases

type
Ptr = " recgs
rec = record
fi1,f2: inteders
ends’

var
toPsP: PLI}
i: inteders

begin
mark(tor) 3 (% remember the base of the heap #)
repeat
for i := 1 to S000 do
bedin
new(r)i (* allocate from next hidhest hear address %)
‘e
end]}
release(top) i (% cut back the heari recover all space *)
until falses (# prodram will run forever *)
end.,

When using this method, the computer does not prevent you from making the mistake of
releasing to a point above the current top-of-heap!

DISPOSE

Alternatively, the standard procedure DISPOSE can be used to return each unwanted dynamic
variable back to a pool of free space.

Pascal Compiler 237

Calls to DISPOSE will have no effect (the freed storage will not be reused) unless the main
program and the modules containing the NEW and DISPOSE calls are compiled with the
directive SHEAP_DISPOSE ON$.

Pprodram disposals

typPe
Ptr = " rec}
rec = record

next: Ptri
fl:sf2: inteders
endj
var
toPsPsrDOt: PLTI
it intederi

bedin
markK(tor)3j (# remember the base of the hear *)
repeat
root = nili
for i 2= 1 to J000 do
bkedin
new(pP) i (# after disposesy will allocate from free list %)
P smext = root} root = P3 (# chain all cells todether *)
+
end?
LR I)
repeat (*# give back all cells one at a time #*)
P 1= root}
root := root .nexti (# follow the chain *)
dispose(r)i (% mem manader Puts on a free list #)
until root = nils
until falses (% Prodram will run forever *)
end.

The recycling algorithm takes advantage of the fact that programs which use the heap operate
on a great many variables of just a few types. Each type has a characteristic size. When a
variable is disposed, it is saved at the front of a list of other variables of the same size. When a
variable is allocated, the NEW routine first looks on the list corresponding to the size required; if
there is a free object there, it can be allocated immediately. Usually there will be very little
computational overhead for either NEW or DISPOSE.

The memory manager maintains free lists for objects of sizes 4, 6, 8, ... 32 bytes, and one more
list for all larger objects. Objects are allocated from this last list on a first-fit basis. No dynamic
variable is ever allocated an odd number of bytes.

It is possible for the program to behave so that the heap becomes fragmented (broken into
many small pieces). If a request then arrives to allocate space for a large variable, the memory
manager will try to recombine the fragments to make a piece big enough to satisfy the request.
The fragments must be sorted by address and adjacent ones merged.

The recombination process takes much longer than a simple allocation. Consequently, in

real-time applications it is important to analyze the dynamic behavior of programs which use
DISPOSE.

238 Pascal Compiler

Mixing DISPOSE and RELEASE

It is also possible to mix the disciplines in a well-behaved manner. However, not all imple-
mentations of HP Pascal allow mixing these methods in a program. A program which does so
may not run properly on other implementations.

If you RELEASE a properly MARKed pointer after some calls to DISPOSE, the memory
manager will leave on the free lists all disposed objects whose addresses are below the released
location. All the space above the released location becomes free, whether or not it was dis-
posed.

During this process the memory manager also recombines any adjacent free fragments, so
RELEASE can also be used to reduce fragmentation. Just MARK the current top of the heap,
then immediately RELEASE to the same spot.

Pascal Compiler

Converting UCSD Pascal Programs

(“UCSD Pascal” is a trademark of the Regents of the University of California)

There are many slightly differing implementations of the UCSD Pascal system. Series 200
Pascal will not provide perfect compatibility with UCSD Pascal or IEM Pascal (HP 9835/9845
systems). In particular, it isn’t possible to directly interpret P-code programs since Series 200
Pascal translates programs directly into native MC68000 processor instructions.

Instead the aim is to make it easy to recompile USCD programs to run on your system. We are
unable to provide perfect compatibility for several reasons:

1. Technical difficulty in the case of two features
2. Low return / low utilization of some other features
3. Definition conflicts between UCSD Pascal and the HP Pascal standard

Most programs should port easily, but some programmer attention will be required.

This Appendix consists of two parts: a detailed list of those UCSD language extensions which
are enable by the $UCSD$ directive, and some notes giving more guidance to the programmer.

Supported Features of UCSD Pascal

To use these language extensions, precede the source program text with the $UCSD$ directive.

UCSD Feature

Series 200 Support

TYPE S = STRING [maxlength]
default string length 80

string lengths of up to 255 characters
arbitrary string type as VAR parameter

setting length of string

LENGTH of string function

POS string position function

CONCAT string function

COPY substring function

DELETE substring function

INSERT substring function

SCAN string/character array procedure
MOVELEEFT byte oriented data moving

MOVERIGHT byte oriented data moving

FILLCHAR byte stream fill

support
-unsupported; must specify length

support

-must specify STRING rather than string type-

name
support
support
support
support
support
support
support
support

-support; behavior with overlapped source and
destination buffers may not be consistent with
other UCSD implementations.

-support; behavior with overlapped source and
destination buffers may not be consistent with
other UCSD implementations.

support

239

240 Pascal Compiler

UCSD

Series 200 Support

untyped files

UNITREAD direct I/O
UNITWRITE direct /O
UNITBUSY /O test
UNITCLEAR l/O flush
UNITWAIT /O idle
BLOCKREAD direct I/O
BLOCKWRITE direct /O
IORESULT function

Standard units PRINTER, CONSOLE, SYS-
TERM

SEEK random access positioning

CLOSE file options LOCK, NORMAL, PURGE,
CRUNCH

INTERACTIVE text files

SIZEOF variable or type

HALT program termination

GOTOXY cursor positioning

program heading without listing standard files
EXTERNAL procedures/functions
MEMAVAIL heapspace interrogation function
SETs with up to 4k elements

16-bit integer

long BCD integer to 36 digits

STR long int to string conversion

32-bit real numbers

LOG function

TIME function

PWROFTEN function

multiword comparison of arrays, records
nested comments

CASE statement for illegal selector

support
support
support
support
support
support
support
support
support
support

-support but index from one not zero

-the option name must be enclosed in quotes

-specifier disallowed but behavior provided by
HP TEXT files

support
support
support
support
support
-returns size in bytes, not words
-support limited to 255 elements

-normal integer 32 bits; may declare subrange
-32768..32767

-unsupported; have binary 9-and-a-half digit in-
teger.

-HP Pascal has more general STRWRITE
-9826 always uses 64-bit reals
-only LN is supported
-not supported; read system clock
not supported
not supported
-use $IF...$ directive instead

-must add OTHERWISE clause

Pascal Compiler 241

UCSD Series 200 Support
EXIT statement -unsupported; can be simulated by TRY/RE-
COVER (cf. Appendix C)
SEGMENT procedures -not supported; entire program must be resident.

UNIT

Compiler directives/options
AUTOPAGE
COPYRIGHT
DEBUG
FLIP (byteflip)
GOTO
IOCHECK
INCLUDE

(intermixed declarations in INCLUDE)
LIBRARY
LINESPERPAGE
LINEWIDTH
LIST
LIST <filename>
LISTFILE
PAGE
QUIET
RANGE
SWAP
TABLE
TRACE
TRACEPAUSE
USERMODE

-functionally a subset of MODULE; MODULE
syntax a little different

-syntax differs: see Appendix B
-use LINES 2000000 to turn off
COPYRIGHT
DEBUG
unsupported (irrelevant)
unsupported (always allowed)
IOCHECK
INCLUDE
supported
SEARCH
LINES
PAGEWIDTH
LIST
LIST file specification
LIST file specification
PAGE
unsupported (irrelevant)
RANGE
unsupported
TABLES
DEBUG and use debugger
DEBUG and use debugger

unsupported (irrelevant)

242 Pascal Compiler

Some Useful Hints

Files

UCSD Pascal doesn’t prevent writing to a file which was opened for reading (using RESET).
The converse is also true. If you get 10 error 24, 25 or 26, the file should have been opened
using the HP Pascal standard procedure OPEN.

UCSD Pascal’s random access mechanism (SEEK) considers that the first component of a file is
number zero. HP Pascal considers that files begin with component number one. The $UCSD$
directive does not fix this problem.

UCSD Pascal recognizes a text file type called INTERACTIVE, which differs from files of type
TEXT in that a component of the file isn’t fetched until it is needed. All HP Pascal text files
exhibit this “‘lazy IO’ behavior, so you should change INTERACTIVE files to files of type TEXT.

Strings
In UCSD Pascal, the declaration wvar s: string is equivalent to
var s: stringl[B801. HP Pascal requires the length specifier.

A similar comment applies to string value parameters; the specifier ‘‘string’’ is equivalent to the
name of an 80-character string type, whereas HP Pascal requires an explicit string typename
specifier for value parameters.

UCSD Pascal considers that all strings are compatible as VAR parameters, even if the actual
parameter is shorter than the specified formal parameter. This can lead to unexpected bugs. HP
Pascal allows two forms of VAR string parameter. If a string typename is used, only another
string of identical type may be passed. If the specifier STRING is used, any string may be
passed. In the latter case, however, an “invisible’” second parameter is also passed, giving the
maximum length of the actual parameter. Thus range checking can be performed.

prodram UCSDstringss prodram HPstringdss
tyee tyrPe
strindld = stringl15]13 strindlS = stringli1513
Strind80 = stringlB013
var var
sl: strings sl: stringBOi
s2: string [1513 s2: stringlli
§3: strindg[BOI; s3: stringlBOIS
procedure Pl (s: string)i procedure Pl (s: string80) 3

procedure Plb (s: string)s {illegall

DY

procedure P2 (s: stringld)j procedure P2 (s: stringld);
‘e L)

procedure P3 (var si string)s procedure 3 (var s: string)s
e s

procedure P4 (var s: stringlS)i procedure P4 (var s: stringl3)s

e Ve
procedure P3 (var s: stringB0);

e

bedin bedgin
Pl(sl)} {ledal’} Pl(sl)i {legal?
P2(s1)} {legall Pp2(sl)i {legall}
P3(s1): {legall p3(sl)} {legal?
P3(s2) 1} {legall P3(s2)3 {legal’
Pp4(sl)} {legall} Pd(sl) 3 {illegall
Pd(s2)3 {legall P4(s2) 3 {legal}

P3(sl)i {legall}
PS(s3)3 {illegalyl}
end. end.,

Pascal Compiler

The Exit Procedure

In UCSD Pascal, the statement EXIT(rProc) causes normal program flow to be altered. The
current procedure is discontinued, and procedures are exited in order (most recently called
first) until procedure “proc’’ is exited. The program continues at the next statement after the
call on proc.

This Pascal implementation has no exactly comparable feature; the program must be altered. If
the EXIT statement occurs within the procedure which is to be exited, a simple goto statement
will suffice. Otherwise you must use the TRY-RECOVER statement, which is enabled by
$SYSPROGS.

The basic technique is to surround with a TRY the entire body of any procedure which is the
target of an EXIT. The EXIT itself is simulated by calling ESCAPE with an error code corres-
ponding to the name of the procedure to be exited. The target procedure catches this escape in
its recovery part and then exits normally.

$sysProds

program UCSDexitss prodgram HPtrvrecover;)
const exitp2 = 10037 exite3 =1013
procedure p13 procedure Pl
label 13
bedin begin
L o
exit (pl)} goto 13 {simple local exit?}
LA LER AN
end s 1: endi
procedure rPZ3 procedure P2i
procedure P33} procedure P33
begin bedin
try
LR AN) LEE AN
exit(r3)3 escapel(exitpr3) i
+ e LR}
exit(p2)3 escare(exitp2) i
LN L AN
recover

if escarecode “ > exitp3 then
escarel{escarecode)

end’ {pP32 endi {rP3}
begin {P2} begin {PZ2}
try
P33 P33
recover

if escarecode <> exitpZ then
escape(escarecode) i

endi {pP2} endi {P2}
begin {mainl} begin {mainl

P13 P13

P23 P23

end., end.

243

244 Pascal Compiler

Nested Comments
Comments in Pascal programs may be delimited by either curly braces or parenthesis-asterisk
pairs:

{ this is a comment ¥
(¥ and so is this *)

UCSD Pascal requires that the closing delimiter of a comment be the same “‘kind’’ as the
opening one. HP Pascal treats the two kinds of opening (and closing) delimiter as synonmyms.

(¥ this is an HP Pascal comment ¥
(¥ this is all one { UCED } comment *)

The last example will get a syntax error in HP Pascal because the curly brace after the word
“UCSD” terminates the comment.

The easiest way to get around nested comments in a UCSD Pascal program is to surround the
outer comment with conditional compilation directives:

$if false$
cae all of the materal inside dets sKirrped PO
fend$

Case Statements

In UCSD Pascal, if the selector of a CASE statement doesn’t match any of the labelled cases,
the entire statement is skipped. Series 200 Pascal instead reports error —9, “Case statement
range error’.

This problem can be avoided by putting an OTHERWISE clause at the end of the case state-
ment:

case 1 of
1: writeln(’case 17)3
2 writeln(’case 2°)3
otherwise
writeln(/'The value of 1 is
end?

'

21:3) 3

Separate Compilation Units

Pascal Compiler

The syntax of UNITs can readily be changed into an equivalent MODULE for compilation by
HP Pascal implementations. The word INTERFACE is removed. The word USES is replaced by
IMPORT. And the other declarations in the interface part of the UNIT are preceded by the word

EXPORT.

unit goodstuffs
interface
uses badstuffsbetterstuffsi
const
vee (conmstant declarations)
tvpe
vee (tvpe declarations)
var
vev {variable declarations)
procedure Pl (asb: inteder)i
function f(x): reali
implementation
LR BN 3

end,

Compatibility Rules

module doodstuffi
import badstuff.,betterstuffs;
exrPort
const
LR N
tyPe
Ve
var
LR
procedure Pl (asb: inteder)s
furnction f(x): reali
implement
LR

end.,

HP Pascal enforces stricter compatibility rules than UCSD Pascal. HP generally requires that
types be identical or equivalent where UCSD will accept mere similarity of form.

prodram UCSDisnotpickyi

tvere
complex = record
resim: real
ends’
Ppolar = record
rstheta: real
ends’
var

a: comPlexsi
b: epolari

bedin
a 1= bi { ledal ¥

end,

prodram HPisPicKy 3§

tyPe
complex = record
resim: real
ends
Polar = record
rs+theta: real
ends
roundly = polari
uar

a: compPlexs
b: polari
c: roundlvys

begin
a = ki { illegal }
¢ = bi { ledal ¥

245

246 Pascal Compiler

How Pascal Programs Use the Stack

This section describes how Pascal programs use the stack to store data, return addresses for
procedures, and pointers needed to access variables belonging to nested procedures. The
information can be useful when writing assembly language routines, and when debugging at
the machine level.

You can also investigate this subject by writing some Pascal test programs and seeing what they
produce. The Librarian’s Unassemble command is very useful for this. Two Compiler directives
also produce valuable information: $DEBUG ON$ correlates the machine code displayed by
Unassemble with the original Pascal lines, and $TABLES$ causes the Compiler to print a descrip-
tion of the size and location of each object in the program.

The Pascal Stack

Five types of data can be stored on the stack:

® procedure/function parameters
® return addresses

® local variables

e stack frame pointers

® static links

Two address registers are reserved for stack manipulations:

e A7 - the stack pointer (SP)
® A6 - the stack frame pointer (SF)

The stack grows downward in memory as procedures are called, with A7 always pointing to the
base (beginning, lowest address) of the datum on the “‘top”” of the stack. That is, when space is
allocated for a procedure which has been called, the area allocated has a lower (more negative)
address than the space already allocated for the calling procedure. Space allocated to a proce-
dure is called its stack frame.

However, variables extend upward in memory. This simply means that the address of the first

element of an array, or the first field of a record, is lower than the address of the second element
or field.

Global Variables

Register A5 is reserved as the global base register. A reference to any program or module global
variable is always formulated as a displacement from where register A5 points. The maximum
size of the global area is 64K bytes (the displacement field size). In practice, not all of this space
is available to the program. Some of this area is used for system globals, command interpreter
globals, permanently loaded programs and modules, and so forth.

See the Assembler chapter for details on how to reference Pascal global variables from assem-
bly language programs.

Pascal Compiler

Procedure Calls

When one procedure calls another, the caller pushes any parameters to the called procedure on
the stack. The parameters are pushed on the stack by first decrementing the stack pointer (A7)
an amount equal to the size of the parameter, then storing the parameter where SP now points.
(Pushing a byte decrements the stack pointer by two, since it must always have an even value.)
The calling procedure executes a JSR instruction which pushes the return address on the stack
and jumps to the entry point of the called procedure.

The first instruction executed by the called procedure is a LINK instruction. The LINK instruction
format and function is illustrated below:

format: LINK A6,# —d

function: A6 — —(SP) —push the stack frame pointer onto the
stack
SP — A6 —set the stack frame pointer equal to the
stack pointer
SP-d — SP —drop the stack by the size(d) of the local

variables for the called procedure

If the program is compiled with $STACKCHECK ON$ (which is the default), a TRAP instruction is
issued instead of LINK. The trap service routine checks for stack overflow as it adjusts A6 and SP. In
this case the size #d is stored in the next word after the TRAP instruction.

The stack frame pointer (A6) is used by the called procedure to reference its local variables. See
Figure 6 for an illustration of stack usage for level 1 procedure calls. Level 1 procedures are
those declared at the global level of a program or module.

If the called procedure is not at level 1, the calling procedure pushes a pointer to the stack frame
of the procedure in which the called procedure is declared. This pointer is called the static link.
It is used by the called procedure to resolve references to intermediate variables -- variables
which are neither local to the called procedure, nor globals of the program.

An example might help to clarify the static link. Consider the following program structure
(indentation indicates nesting):

Program main
Pprocedure Pl
procedure P2
procedure P3
rprocedure P4

Assume this calling sequence: main calls p1, calls p2, calls p4. If p4 calls p3 then the static link
pushed would be that of procedure p2 (since p4 is declared within p2). If instead p4 were to call
p2 then the static link would point to p1 (p2 is nested within p1). See Figure 7 for a detailed
example of static links.

247

248 Pascal Compiler

The called procedure is responsible for stack cleanup and for effecting the return to the calling
procedure. Any parameters, local data, or static links belonging to the called procedure must be
removed from the stack before returning to the caller. Once this is complete a return to the
calling procedure can be performed.

The stack cleanup is performed in two steps:

Step 1: Restore the stack frame pointer. Use the UNLK instruction to remove local data from
the stack.

format: UNLK A6

function: A6 — SP —set the stack equal to the stack frame
pointer
(SP)+ — A6 —load the stack frame pointer from the

stack and autoincrement the stack
pointer {this leaves the stack pointer
pointing to the return address)

Step 2: Restore the stack pointer. This removes the static link and parameters from the stack.
After this step, the stack pointer should be as it was before the procedure call.

The called procedure returns to the caller by branching to the return address. If the return
address was saved in an address register during stack cleanup then an indirect JMP through the
address register is executed. If the return address was left on the stack then an RTS instruction is
executed.

format: RTS

function: (SP)+ — PC —set the program counter to the value
pointed to by the stack pointer and
pop the value off the stack

See Figure 8 for an example of a return from a called procedure.

Function Calls

Function calls differ from procedure calls only in that they return results. The result is usually
returned on the stack. It is the responsibility of the calling procedure or function to pop the
result off of the stack. This is normally done when the result is referenced.

Parameter Passing Mechanisms
There are two kinds of formal parameters: those passed by reference, and those passed by value.

® reference parameters
all handled alike

® value parameters:
a) simple value parameters:
simple types (integer, char.)
array and record types <= 4 bytes
b) copied value parameters:
reals, and array and record types > 4 bytes

Pascal Compiler 249

Reference parameters are those which are specified VAR in the procedure heading. They are
“‘passed by reference’’: the address of the actual parameter is passed to the called procedure or
function. This address is used for all references to the parameter. No copying of the parameter
is performed.

Value parameters are those which are not specified VAR in the heading. They are “‘passed by
value’: a copy of the parameter is passed to the called procedure or function. If the value para-
meter is a simple type (except REAL), then its value is pushed on the stack. If the parameter is a
simple REAL, or an array or record (and its size is more than 4 bytes), then its address is pushed on
the stack by the caller. Before the called routine executes its first statement, it uses the pushed
address to copy the parameter into its local data space (the Compiler reserved this space in addition
to the local variable space).

Values of type ‘‘procedure’ are not copied; their values are pushed directly even though they
are eight bytes long.

Function Results

Sometimes the calling environment must allocate temporary space in which to return function
results. In general this is necessary when the function returns a result which is bigger than 4
bytes. The temporary space is allocated as part of the program’s global area if the call is from
the main program; otherwise it is allocated as part of the local data area. The amount of
temporary space required is determined at compile time. Functions which return a value of type
real are an exception; the result area is on the stack and occupies eight bytes.

Figure 6. PASCAL Procedure Calls (Without Static Links)

Return Address
A6 [
Local Var_1
4 4 - local variables for calling procedure
Local Var_n
Parm_1
1 4 | L «— parameters for called procedure
Parm_n
return address pushed on the stack by the jsr
Return Address < instruction executed by the calling procedure
A6 — A6 L]« the stack frame pointer pushed on the stack by
the link instruction executed by the called pro-
Local Var_1 cedure
+ 4 —«— local variables for called procedure
A7 —~ Local Var_n

(The stack is pictured growing toward the bottom of the page. Pointers actually address the bottom of the designated entry.)

250 Pascal Compiler

The following Pascal program illustrates the use of the static link. Note that the program is only
intended for illustration purposes; running it results in error -2 (not enough memory), because it
recurses infinitely.

Prodram main(inpPutsontpPut)i
var i: inteders

procedure Al
var K:intederi

procedure B}
var m: inteders

procedure C(izimteder)s
var o3 inteders

procedure D3
var 9: inteder3

bedin
Bi
Cs
i = K3
K 1= mi { see note #3 1}
m = 0}
o 1= aj
q 1= 13
endi {D}
bedgin {C¥
D3
m = 0}
endid {C»
bedin {B}
Clm) i
K = 13
endi {BY}
bhedin {AY}
B3
endi { A}

begin {main?
As
end, {main?

Pascal Compiler

Consider the following calling sequence:

main calls A
A calls B
B calls C (with m as the parameter)
C calls D
D calls B

The stack for this calling sequence is shown in Figure 7.

Figure 7. PASCAL Procecure Calls With Static Links

STACK FOR PROCEDURE A

Retum Address local variable k

] A6 oo

Local Var k
Static Link —
Return Address
A6 -
Local Var m
See Note#1 Parm(m)
Static Link -
Return Address

STACK FOR PROCEDURE B
called procedure B's
access to A's local variables

local variable m

i

STACK FOR PROCEDURE C
parameter for Procedure C

called procedure C’s
accessto A's and B's

17N TN

D's A6 f A6 n local variables
Local Var o ¢ |ocal variable o
tic Li -
Staic Link < STACK FOR PROCEDURE D
B Return Address called procedure D's
~ A6 accessto A, B,andC's
Local Var g ~—— . |ocal variable g
See Note#2 Static Link f— STACK FOR PROCEDURE B
Return Address \ called procedure B's access
A6 A6 to A’s local variables
A7 — | LocalVar m | e——— local variable m

Note 1: The static link and the parameters are always accessed at positive offsets from A6. The
effective address of the static link (if present) is always 8(A6). Local variables are at
negative displacements from A6.

Note 2: In general the static link gives the called procedure access to the intermediate variables

of procedures which precede it in the calling sequence. In this particular case the static
link gives procedure B access to variables declared within procedure A.

(Pointers actually address the bottom of the designated entry.)

251

252 Pascal Compiler

Procedure D reaches intermediate variables using:

® its current stack frame pointer
o the difference between its nesting level and that of the called procedure

In this case procedure D is at level 4 and procedure B is at level 2, for a relative distance
of 2. Therefore procedure B must follow two static links to reach the stack frame of B.

In other words:

MOVEA.L 8(A6),A0 - get procedure D’s static link
MOVEA.L 8(A0),A0 - get procedure C’s static link
MOVE.L 8(A0),-(SP) - get procedure B’s static link

and push it on the stack

Remember: procedure C’s static link gives access to B’s locals,
procedure B’s static link gives access to A’s, etc.

Note 3: When nested procedures reference intermediate variables they use the static link. An
example of this is when procedure D references k and m in the statement k : = m;.

k is declared in procedure A and m is in procedure B. The nesting level relative to
procedure D for k is 3 and for m it is 2.

The following code will perform the statement k : = m.

MOVEA.L 8(A6),A0 get D’s static link
MOVEA.L 8(A0),A0 get C’s static link
MOVEA.L 8(A0),A0 get B’s static link
MOVEA.L 8(A6),al get D’s static link
MOVEA.L 8(al),al get C’s static link

MOVE.L —4(al), —4(A0) store min k
The return to procedure A (as shown in the following stack segment) is accomplished in four
steps. Note: the register prefixes indicate the value of the register for the indicated step. The
values are those the registers have AFTER the step has been executed.

Step 1: UNLK A6 - restore the stack frame pointer (A6)
Step 2: MOVEA.L (SP)+,A0 - save the return address in AO
Step 3: ADDQ.1 #12,SP - restore the stack pointer

Step 4: JMP (AO) - return to where procedure A called B

Pascal Compiler 253

If there are not any parameters then the return sequence normally is:

UNLK A6 - restore the stack frame pointer
MOVEA.L (SP) + ,(SP) - replace the static link with the return
address

RTS - return to procedure A

If there is no static link (and no parameters) then the sequence is:

UNLK A6 - restore the stack frame pointer
RTS - return to procedure A

Figure 8. Return from a Procedure Call

(Step 1) A6 —«| A6 |., STACKFORPROCEDURE A
~—— | a local variable for A
(Step 3) A7 —| .1~ Local Var | ,
~ Pam 1 . STACK FOR PROCEDURE B
~ Pam2 \ aparameterforB
(Step2) A7 | [Static Link _ -J\ another parameter for B
(Step 1) A7 — Return Addrsss" \ called procedu T
i . . access to A's | r,rabtes;,,,,
(Start) A7— | LocalVarm | <« local variable m

(Pointers actually address the bottom of the designated entry.)

254 Pascal Compiler

Implementation Restrictions

Input to the Compiler

Input to the Compiler is normally prepared by the Editor. Files produced by the Editor are
either TEXT, ASCII or DATA. If the file name contains no suffix, TEXT will be assumed.

Nesting of INCLUDE Files and IMPORT Declarations

The Compiler can keep track of a maximum of 10 active input files at once. This means that an
INCLUDEC file can include another file, and so forth, nine times. Exceeding this limit causes
error 608 or 610.

When a module is imported which hasn’t been previously imported during a compilation, a
form of inclusion takes place in which various library files are opened and searched. These files

are counted against the maximum of ten while they are open (during the processing of the
IMPORT declaration).

If module “A” is imported, and its interface specification imports module *'B”’, and so on, the
Compiler will chase the importation chain to its very end (unless it runs into the name of a
module which has already been seen). If you encounter a situation in which the chain exceeds
the limit of ten open input files, you can avoid the problem by making the first module in the
chain import all the others in reverse order: the end of the chain first, then the modules which
depend on that last one, and so on.

Module Names Used by the Operating System

If you create a module having the same name as a system module, and your module exports a
procedure which has the same name as some procedure exported from that Operating System
module, the loader may hook up external references to the wrong place. That is, your module will
override the Operating System Module.

The way to avoid this is to not use any of the module names listed in the Technical Reference
Appendix.

Pascal Compiler

Maximum Size of Local and Global Data Areas

Global areas are accessed by adding (subtracting) a displacement value to the contents of processor
register A5. Since the displacement value cannot exceed 32 768 bytes, the A5 register points to
32 768 bytes below the start of the global area, thus providing access to a full 65 536 bytes of
global space.

Every module loaded is allocated global area at load time. The sum of global space for all the
modules and programs loaded at one time can’t exceed 65 536 bytes. About 2 Kbytes of global
space is taken up by the system. The table below shows the approximate values of global space
required for each subsystem.

Total Globals (in Kbytes)
Assembler: 65 7
Compiler: 195 7
Editor: 50 4
Filer: 48 1
Librarian: 47 2

Table 1.

Note

The only way to remove a permanently loaded program or library
from memory is to reboot.

If you’re writing a program which needs a very large global area (ie a big array), it can be
allocated out of the heap by a call to NEW, then referenced through a pointer. This is a bit of a
nuisance, but carries a negligible performance penalty.

Prodgram bigarravi

tyPe
digantic = array [1,,200001 of reali (#¥1B0,000 bytes*)
Ptr = “didantici

var
bigthind: Ptri
isds intedersi

bedin

new(bidthing)j

for i := 1 to 20000 do bigthing"[i] 1= 0,01
end,

Implementation of CASE Statements

CASE statements are implemented using a “‘jump table’’. This table is organized as an array of
16-bit values, each an “‘offset’” or distance from the head of the statement to the various cases.
The number of entries in the table is the inclusive range from the lowest to the highest labels in
the statement. If the lowest is labeled ‘1’ and the highest is ““15000”’, there will be 15000
entries!

255

256 Pascal Compiler

The Compiler displays a warning if it decides a CASE statement is unreasonably large and most
of the values in the table are absent or correspond to the same case. If you get such a warning,
you should probably recode the statement using IF’s or a combination of IF’s and a smaller
CASE statement.

Despite the warning, the Compiler will try to generate the statement as written. If the jump table
is very large, it may take a long time to write to the output file. You may even think the
Compiler has gotten hung up somehow, but the warning message indicates this is not the case.

Range of Real and Integer Numbers
e integers: —2147483648 thru 2147483647

e reals: —1.797693134862315 E + 308 thru —2.225073858507202 E —308
0.0
+2.225073858507202 E — 308 thru +1.797693134862315 E +308

® longreals: same as reals

16-bit Subranges

A variable declared as a subrange needing 16 or fewer bits for its representation will be stored
as a word instead of a longword. For example,

tyPe inteder = -32768.,.32767:

If all the operands of an expression are represented as 16-bit objects, the Compiler implements
the expression in 16-bit rather than 32-bit instructions. In particular, integer overflow is de-
tected as a carry into the 17th bit. The rules are:

® add, subtract: overflow will be detected.
o divide: —32768 div — 1 yields integer overflow.
® multiply: the result is widened to 32 bits.

Note that the representation of an unpacked subrange of integer always reserves room for a
sign bit. Hence the range 0..65535 will not be represented in 16 bits, even though it could in
fact be.

String Length

Strings may not have a declared length greater than 255 characters.

Ordinal Range of Sets

Sets may not span an ordinal range of more than 256 elements.

Declared Record Length

Records may not be declared which require more than 32767 bytes for their representation.

Pascal Compiler 257

Deviations from HP Standard Pascal
Known Deviations

The following are known deviations of this implementation from HP Standard Pascal. Although we
have tried to identify all deviations, no guarantee is made that this list is complete.

® The standard function LINEPOS is not implemented.

® Type REAL has the same precision as LONGREAL. This is permitted by the Standard.
However, in WRITE statements the default field width for LONGREAL is the same as for
REAL, and the exponent is written preceded by E instead of L.

® The syntax of the two Compiler options $IF and $SEARCH do not conform to the syntax of all
other allowable options.

® Module names are restricted options to a maximum of 15 characters. No other identifiers are
restricted in length in this implementation.

File System Differences

To allow for the fact that different computers provide different underlying operating system support,
HP Pascal allows certain variations in the parameters passed to the standard procedures for
opening and closing files. These parameters appear as strings passed to the standard procedures; it
is their content which may vary. For instance, the file naming conventions are very different in
different operating systems. Such variations may require minor changes in a program if it is moved
to a type of computer different from the one on which it was developed.

258 Pascal Compiler

Unreported Errors

Certain errors in Pascal programs are not reported by this implementation.

¢ Disposing a pointer while in the scope of a WITH referencing the variable to which it points.
e Disposing a pointer while the variable it points to is being used as a VAR parameter.

® Disposing an uninitialized or NIL pointer.

e Disposing a pointer to a variant record using the wrong tagfield list.

® Assigment to a FOR-loop control variable while inside the loop.

e GOTO into a conditional or structured statement.

e Exiting a function before a result value has been assigned.

e Changing the tagfield of a dynamic variable to a value other than was specified in the call to
NEW.

® Accessing a variant field when the tagfield indicates a different variant.

® Negative field width parameters in a WRITE statement.

e

® The underscore character ““_" is allowed in identifiers. This is permitted in HP Pascal, but is
not reported as an error when compiling with $ANSI$ specified.

e Value range error is not always reported when an illegal value is assigned to a variable of
type SET.

Chapter

The Assembler

Introduction

The Assembler is included in the Pascal Workstation System for translation of assembly language
routines into object code. Assembly language programming gives the user the ability to optimize
critical sections of a program (such as for speed or code-size improvements).

The Assembler is designed to translate assembly language as specified by Motorola in the
MC68000 User’s Manual. A copy of that manual is included in the Pascal documentation package.

This chapter contains the information necessary to write assembly language programs and sub-
routines. The first section demonstrates the method of generating external procedures and entire
object modules of assembly code that can be interfaced to Pascal programs. The later sections
explain the instruction format requirements and the Assembler directives.

The requirements for writing routines that will interface with Pascal programs are explained in
detail. You should be familiar with the concept of Pascal modules before attempting to emulate
them in assembly language. This is also true of the TRY-RECOVER mechanism. Refer to the Pascal
Compiler chapter for this information.

Like Compiler options, the options (directives) that you give to the Assembler are coded into your
program and not given in an interactive session. The Assembler directives are explained in the
Assembler Pseudo-op Reference section of this chapter.

259

260 The Assembler

Operating the Assembler

This section shows you how to:

® [Invoke the Assembler

e Specify the name of your text file program and your resulting code file
e Give listing specifications

o Interpret the listing

Invoking the Assembler
The Assembler is delivered on the ASM: disc. If you plan to run the Assembler several times in a
session, you could use the Permanent command to keep the Assembler in memory ready to run.

Otherwise, put the ASM: disc in a drive and press (_A) to run the Assembler.

Source File Specification

If there is a work file (see the Filer chapter), that file will be automatically assembled and there
will be an “‘errors only’’ listing on the CRT. If the “‘errors only’ listing is sufficient, your source
program file can be specified as the work file. Otherwise, clear the work file.

If there is no work file, you will be prompted to enter the name of your program file:
What source file?_

Enter the volume name (unless using the default volume explained in the Filer chapter), and file
name of your source program. It is not necessary to include the “.TEXT" suffix of your file
name. If it is not included, it will be done for you by the system. For example, if your program
file is called PROGRAM.TEXT and it is on the volume called TOMS:, then use this file specifica-

tion:

TOMS:PROGRAM

Listing File Information
You are then prompted to specify whether or not you will want a listing of the assembly:

-

Do vou want a eprodgram listing (¥/n/e) 7.

You may type:

(Y) for a complete listing
(_N_) for no listing but errors reported on the CRT

(_E_) for a listing of the errors only

If you want a listing, you can have it printed immediately or have the Assembler generate a file
of the listing information:

What listing file (default PRINTER:PROGRAM.ASC) ~7_

For a printer listing, press (Retum) or (ENTER).

The Assembler

To generate a listing on a file, enter the name of the volume and the name of the file. It is
recommended that a size specification be made for the listing file (See the Filer chapter).
Otherwise, the largest space on the disc will be reserved for the listing, which may leave no
space for the code file. A good rule of thumb is to use twice the number of blocks used by
program file. For example, if TOMS:PROGRAM.TEXT is 20 blocks long, a size specification of
40 blocks is made for the listing file.

TOMS:PROGLIST.TEXTLA40]

(Be sure to include the period at the end of the file name.)

It is possible to have a CRT screen listing by specifying “CONSOLE:” as the listing file. This is
not recommended unless the program is very small, or an ‘‘error only’’ listing was requested.
The listing will be scrolled onto the screen and you are returned to the Main Command Level.
There is no way to control the screen listing.

Object File Specification

Finally, you are prompted to give a name for the code file that will be generated by the
Assembler. The default name is that of the source file with the suffix: “.CODE” replacing
“TEXT”.

Outeut file (default is TOMS:PROGRAM.CODE) ?_

If the default name is acceptable, press (Retum) or (ENTER). If you want to specify another name,
enter the complete file specification.

After this entry, the Assembler begins processing your program. The CRT displays when the
first pass of the Assembler is completed along with the number of errors encountered during the
pass. There is a similar display for the second pass. After the second pass is completed, you are
returned to the Main Command Level. If no errors were generated during the assembler, a code
file was created.

If the assembly program is executable (has a start address), you may run it by pressing(_R_) at
the Main Level. The Run command will run your program automatically until:

® another program is assembled or compiled.
® a workfile is specified.

e the computer is powered down.

® the system volume is re-specified.

If the Run command no longer works for your program, use the eXecute command and give the
name of the code file that was generated.

261

262 The Assembler

Interpreting the Listing

The output from the Assembler contains the following information. The first column on the listing
indicates the (decimal) number of the source-program line. For each line of source, a line number is
generated. This is true of blank lines as well.

The second column shows the location counter (relative to the code origin). The value is in hex
notation unless the DECIMAL pseudo-op is specified. When the program is loaded, the number in
column two can be added to the base address of the load to obtain the absolute address of the
instruction. This is useful information when debugging.

The third column shows the hex representation of the machine code that is generated by the
Assembler for the instruction.

The right side of the listing is a copy of the source program.

Sample Assembler Output

lT.ine Number Address | Hex Value Source Code

3B Q0000000 rord 0

37

38 QOOQO000 0000 0000 simplel._zero de. 1 040

38 Q0000004 0000 0000

39

40 00000008 4dEdl simpleZ_initialize trap #1 (stack check)

41 OOO0000A 0000 deew O {(ro local space)

4z

43 Q000000OC 4CFA Q300 movem.l simpleZ_zerosal-al
FFFO

a4 00000012 4BED 0300 movem,l a0-aljssum(al)
FFFO

45

46 00000018 4ESE unlk aG

47 OO0O001A 4ETS rts

48

49 0000001C 4E41 simpleZ_partadd trap #1

50 0DOO0O0OD1E FFFC de.w -4

51

32 0000 0010 result equ 16

53 Q000 000C x eaqy 12

54 Q000 0008 ¥ equ 8 {(relative to aGBG)

a3=) 0000 0004 ret_addr equ 4

Error messages are listed under the line in which they occur. At the completion of the assembly,
the number of errors will be displayed. If there are errors, there will be a directive for you to
check the location of the last error in the program. At that location there will be a description of
the error. Also listed will be the location of the error above it if one exists. In this manner, all
errors can be located without having to search the whole listing.

The Assembler

The Programming System

It is assumed that you will be writing most of your programs in Pascal. In the instance where the
execution speed of a particular routine is insufficient, this section will show you how to translate the
Pascal routine into an assembly language routine and call it from your Pascal program.

Itis possible to write a simple procedure, put it in the system library (usually a file named LIBRARY
on the * volume), and access it with an EXTERNAL declaration from the Pascal program. Howev-
er, add some interface text to the routine, and you have created a module. The benefits of modules
are that global variables and constants may be used for communication among modules. Special
types which define parameters need only be declared in the module containing the called proce-
dure.

A Pascal module was developed for use as an example. The Librarian was used to disassemble the
code into its assembly language counterpart. The intent of this section is to explain the method of
interpreting the disassembly information and producing a working Assembler language module.
The listings of the examples are included at the end of this chapter. The examples are also available
on the documentation disc (DOC:). The file (ASMB_P1) imports the file (ASMB_M1). These are
both Pascal files. The Pascal file (ASMB_P2) imports the Assembler language file (ASMB_M2).

You'll notice in the example program that the variables are declared to be of the type which are
defined in the imported module. If the program merely declared one or two of the procedures to be
EXTERNAL procedures, those special types would have to be defined in every program that called
the procedures. It would be like going to the Library for a book and having to write down the table
of contents every time you wanted to use the book.

For your Assembler language module to interface cleanly with the Pascal program, the conventions
of the Compiler must be followed. That is, you must set up the Assembler language module to act
as if it were a compiled Pascal module. You must also exit the module leaving everything in order,
as a Pascal module would.

The information you need to accomplish a clean ‘‘Pascal-to-Assembler language’’ interface is
presented in this section. You should understand how the Compiler:

® Prepares interface text (IMPORT text)

® Declares entry points (DEF table)

® Declares external references (EXT table)
® Passes parameters

® Creates global variable space

e |nitializes modules

® Recovers from errors

® Returns from subroutines

You will find a listing of the Pascal program and module as originally written, a listing of the
disassembly of the module, and a listing of the final, working Assembler language module. These
listings are included at the end of this section. It might be helpful to remove them from the manual
and keep them out for reference as you’re reading this material.

263

264 The Assembler

The first subject covered is the method of generating the IMPORT text. This is what separates
an importable module from a simple external routine. The subsequent material is of concern in
either case. There will be a short explanation of the method for declaring EXTERNAL routines
toward the end of the section.

The IMPORT Text

Certain information must be passed from an imported module to the Compiler to complete the
module interface. This information is the IMPORT text. Actually, IMPORT text contains IM-
PORT declarations and EXPORT declarations. It's called IMPORT text because it's what the
Compiler needs when it is importing the module. It must know the module name, global
variables, global constants, and procedure and function names. If special TYPE declarations are
needed to define the variables, they must be included in this information.

At compile time, your imported Assembler module must make this information available to the
Compiler. This is done with the SRC pseudo-op. See how the IMPORT text of the Pascal listing is
exactly the same as the SRC-IMPORT text below.

src module simpleZs
SIC eXPOTt

src typPe

sIC rec = record

src il ¢ integder:?

sre i2 ¢ integeri

src endsi

STC const

STc zero = reclil:0si2:0135
sre var

src lastresult i reci

Src procedure initializes

src procedure add(asb : rec}
STC var out : rec)i
src oendi

The SRC section does not actually name the module or get the global space. There are separate
techniques for accomplishing these things, which are discussed later.

The DEF Table

The DEF table contains the locations of all the entry points in the Pascal module and the
location of its global space. This information is provided for the linking loader. The information
is used to link all the modules together before they can be loaded and executed.

DEF table of ‘SIMPLE’:

SIMPLE Ghase
SIMPLE_ADD Rhase+82
SIMPLE._INITIALIZE Rbase+10
SIMPLE_SIMPLE Rbase+252
SIMPLE_ZERO Rbase

The symbol “SIMPLE” which is the same as the module name, is the name of the module’s
global variable space. This symbol is entered into the DEF table automatically when you
reserve the global space using the COM statement. This is explained later in the global variable
section of this chapter.

The Assembler

“SIMPLE_ADD’’ AND “‘SIMPLE_INITIALIZE” are the entry points into the two procedures ‘‘add”
and “‘initialize’’. When writing Assembler language routines, they must be named as the Compiler
names its procedures. The Compiler appends the module name to the front of the procedure
name, separated by an “‘_"’. When the Compiler looks at your IMPORT section, it assumes that the
procedures have been named by its convention. When it’s time for the loader to hook everything
together, it looks for those procedure names in your module’s DEF table.

“SIMPLE_SIMPLE" is the entry point, or location, of the module initialization body. Module
initialization is discussed later in this chapter.

“SIMPLE_ZEROQ” is the location of the structured constant, ‘‘zero’”, which appears in the
IMPORT section of the module. Any code which resides in the assembly module and is de-
clared in the IMPORT section of the module, must appear in the DEF table. It, too, must be
named by prefixing the module name to the constant name that you declare in the IMPORT
section. This name must appear as a label at the constant’s location in the program.

You must create a DEF table for the Assembler version of your routine. This is done using the DEF
statement. Notice that all the symbols in the Pascal module’s DEF table are named in the DEF
statements below except the symbol for the global variable space. The global variable symbol is
entered into the table at the time the space is reserved with the COM statement.

def simpleZ_add
def simpleZ_initialize
def simpleZ.zerosrsimpleZ_simpleZ

The EXT Table

The EXT table that you get from the Librarian is the list of the symbols that the loader must find
in some corresponding DEF table so our module can access those external items.

EXT table of 'SIMPLE':

SYSGLOBALS

“SYSGLOBALS” is the only symbol in this particular list. We need to access some of the
system’s global variables in our routine so we must know where they are kept. They are in the
global variable space for the system, “SYSGLOBALS”. (See the TRY-RECOVER section for
more details about the system globals.)

The EXT table is created in the Assembler module using REFA and REFR. Both instructions enter
symbol names into the EXT table. REFA causes the symbol to be referenced using absolute

addressing. REFR causes the symbol to be referenced using 16-bit PC relative addressing. See
REFA, REFR, SMODE and LMODE in the pseudo-op reference section.

In the example, “SYSGLOBALS’’ was declared as external using REFA.
If other modules’ global variable sections were to be referenced, the symbol for those areas

would also need to be included in our EXT table. This is explained in the global variable
section.

265

266 The Assembler

Declaring the Module Name

The module is named using MNAME. This puts the name of the module in the module directory
for the Compiler to reference when importing the module.

If no MNAME is used, the module name will be the same as the file name.

Passing Parameters

When parameters are passed to a procedure, the values or addresses of variables in the
parameter list are pushed onto the stack. The function result space is put on the stack if the
routine is a function. The leftmost variable in the parameter list is pushed onto the stack. Then
the rest are pushed onto the stack in order from left to right. The return address is pushed onto
the stack automatically by the processor at the time the JSR instruction is encountered.

For example:

114 2FOE move,l aBi-(sp)

116 487A 00SA pea Rbase+Z08

120 2ZBAF FFFGB mouve,l sps8YSGLOBALS-10(as)
124 S98F suba,l #d4,sp

126 2F2E FFFO move,l -1B8(aB)s-{sp)

130 2ZF2E FFFB8 move 1 -8(aB) -(sp)

134 4EBA FF498B JsT Rbase+32

138 2BSF FFFB moves.l (sp)+,Ghase-B(al)
142 598F suba.l #d,sp

144 ZF2E FFF4 move,l -12(aB),-(sp)

148 2F2E FFFC move.l -d4{aB),-(sp)

152 4EBA FFB8G Jsr Rbase+32

156 ZBSF FFFC mouves]l (sp)+:Gbhase-4{(a%)
160 202D FFF8 moue,l Gbase-8(a3) 40
164 D1AD FFFO add.l d40sGbase-1G(ab)

The stack is mapped in the following way:

FUNCTION RESULT
12(SP)—
VALUE of x
8(SP)—
VALUE of y
4(SP)—
RETURN ADDRESS
(SP)—

Notice that the stack grows downward (toward smaller addresses).

If a parameter is passed by reference, a 4-byte address is pushed onto the stack. When passing
by value, values up to 4-bytes are pushed onto the stack, but larger values are essentially
passed by reference. That is, a 4-byte address is pushed on the stack. In this case, a copy of the
value must be made in local variable space so that the actual parameter is not altered. This is
illustrated in the Local Variable section.

More information can be found in the Compiler chapter under the heading ‘‘How Pascal Uses
the Stack’.

The Assembler

Declaring Global Variables

You must understand how the Compiler allocates global variable space so that you get and use
global space the same way. The value stored in register A5 is the base address for all global areas.
Each module that declares global variables is allocated an area for them. The symbol assigned to
the area is the distance from the base address in A5 to the top of the global area. Globals are then
referenced symbolically, using the global area name and offset relative to A5.

The name for the location of a module’s globals (relative to the address in A5) is the same as the
module name. So the symbol for the global area for ‘‘module simple”” would be *“SIMPLE”.

Determine how much space you need for your globals. When determining how much space is
needed, you must also consider any variables that are internally global to the module. Notice on the
Pascal module listing that the variable “‘sum” is global to the module.

If you are rewriting a Pascal module as we have done in the example, the Compiler provides
variable size information beside the variable declarations on the listing (the negative number). More
detailed information can be displayed using the Compiler's $TABLES$ directive. In Assembler
language modules, you must also specify the size as a negative value. Declare global space using
the COM statement:

COM simple»-106

The value, — 16, corresponds to the total size of global variables “‘lastresult’” and ‘‘sum’. Both
are records containing two integers each.

The COM statement also enters the symbol into the DEF table.

Referencing Global Variables

The Assembler module name is SIMPLEZ2, as is its global base. Notice in the DEF Table that
“SIMPLE” is equal to “Gbase” (Global BASE) for the Pascal module. Global locations in the
disassembly of the Pascal module are referenced using the symbol “Gbase’’ rather than “simple’’.

DEF table of ‘SIMPLE’:

SIMPLE Gbase
SIMPLE_ADD Rbase+82
SIMPLE_INITIALIZE Rbase+10
SIMPLE_SIMPLE Rbase+252
SIMPLE_ZERD Rbhase

170 202D FFFC move,l Ghase-4(a5) d0
174 DiIAD FFF4 add.1 d40+Ghase-12(alf)
178 4ET7B traprv

180 20BE 0008 movea.,l B(aB) a0

184 4CAD 1EQO movem.,w Gbase-B(aS)r,al-ad

267

268 The Assembler

When writing your Assembler language module, use the COM symbol to reference globals. The
Assembler doesn’t recognize ‘‘Gbase”. In our Assembler module, the global variables are refer-
enced using “SIMPLE2”.

lastresult equy simpleZ-8

lastresult_il equ simprleZ-8

lastresult_12 equ simple2-4

5 1m eaun simple2-16 (all are relative to a3)
sum—1il eqn simple2-106

sum_12 equ simple2-12

escarecode equ sysdlobals-2

recover_rec equ svsdlobals-10

Note
When structured variables are used, the individual elements of the
structure are referenced at progressively higher addresses within the
structure’s space.

If, for example, you had declared two integers separately instead of together in one record, you
would refer to them as:

lastresult_il EQU simpleZ-4
lastresult_i2 EQU simpleZ2-8

Referencing Other Module’s Globals

When referencing the global variables of another module, it is necessary to establish the
external reference using REFR or REFA.

The individual variables are referenced at negative offsets from the symbol and relative to A5,
as described in the global variable section above. As was mentioned previously, offsets into
data areas are provided on Compiler listings.

Local Variables
There are several methods for getting local variable space. The following method is recom-

mended for those intending to produce purely relocatable code. This is important if the code is
to be committed to ROM.

Notice that the first instruction in each of the disassembled routines is:

TRAP =1
TRAP #1 calls a system routine which allocates local variable space in a new stack frame. A
check is made of available stack space. If there isn’t room on the stack, a ‘“Not Enough
Memory’’ error is reported and control is transferred to the Main Command Level.
The TRAP #1 routine then executes a LINK instruction. The LINK instruction is explained in

detail in the MC68000 User’s Manual and in the Compiler chapter under ‘‘How Pascal Uses the
Stack’.

The Assembler 269

Our Assembler does not understand the double operand format of the TRAP instruction as it is
printed in the disassembly listing. The size of the stack frame is specified following the TRAP
instruction in a DC.W instruction. The value of the constant in the DC.W instruction specifies
the amount of space needed for local variables.

The following illustration shows the stack before the function “‘part_add’ gets its local variable
space.

Before the LINK:
FUNCTION RESULT
12(SP)—
VALUE of x
8(SP)—
VALUE of y
4(SP)—
RETURN ADDRESS
(SP)—
After the LINK:
FUNCTION RESULT
16(A6)—
VALUE of x
12(A6)—
VALUE of y
8(A6)—
RETURN ADDRESS
4(AB)—
OLD (A6)
(AB)—
Temp
-4(A6)— ~—(SP)

Parameters are now referenced relative to A6 instead of SP. Local variables are referenced at
negative offsets from A6.

270 The Assembler

Local variable space is also needed for copies of some value parameters. As was discussed in
the parameter section, value parameters which are larger than 4 bytes have their address put on
the stack in place of the value. In order not to alter the value of the actual parameter, a copy
must be made in local variable space. Allocate the space using the TRAP instruction, then
immediately move the values of the value parameters into the local variable space. This is the
case with the parameters to ‘‘Procedure Add”".

ADDRESS of a
16(A6)—
ADDRESS of b
12(A6)—
ADDRESS of OUT
8(A6) —
RETURN ADDRESS
4(AB) —
OLD (A6)
(AB)—
COPY of b.i2
-4(A6)—
COPY of b.i1
-8(A6)—
COPY of a.i2
-12(A6)—
COPY of a.it
-16(A6)— ~—(SP)

This mapping was accomplished by the following block of code:

76 S04F adda,w #8,spP

78 4EDO Jmp (aQ)

80 Q000 deow O or dec.b 040 or dec.b 7 !
- - - = = = = = = - - - = = = - - - - - - - - - - - SIMPLE_ADD

82 4E41 FFFO trap #1,%#-16

86 Z0BE 0010 movea.l 16(aG),ad

a0 2D38B FFFO move,1l (aD)+,-1G(aB)

a4 2D30 FFF4 : move,l (ad),-12(aB)

98 20BE 000OC mavea.l 12(aB)sal

102 2D58 FFFB8 < move,l (a0)+,-8(ab)

106 ZD50 FFFC moves1 (a0)-d4(aB)

110 2FZD FFFB move.,l SYSGLOBALS-10(a3)sy-(spr)

114 2FOE move.l aB:-(sp)

116 487A 0O0OSA rPea Rbase+Z208

120 2BAF FFFGB move.,l sP+SYSGLOBALS-10(al)

The Assembler

Module Initialization

Finally, it is necessary to include a module initialization body within each module. The initializa-
tion body is a routine which is named by appending the module name to itself, separated by

[T

The purpose of module initialization is to allow for file initialization within the module. Even if a
module declares no files, the Compiler emits a call to the module initialization body for every
module imported into a program. It can be a null routine such as an RTS with the label tacked on to
the end of the assembly:

simpleZ_simplel rts

The name of the module initialization body must be marked as an entry point along with the
other procedure names using DEF.

Error Recovery

The TRY-RECOVER escape mechanism can be written into assembly language routines for
graceful termination of programs that generate errors. TRY-RECOVER is explained in detail in
the Compiler chapter under the heading ‘‘System Programming Language Extensions”.

The section of code that could cause the error is enclosed within the TRY section. The TRY
section creates a RECOVER-record on the stack. The record contains the location of the
previous RECOVER-record, the stack frame pointer, (A6), and the location of the RECOVER
code. The location of this record is saved in a special location that the system knows about. This
location is at an offset of —10 in “SYSGLOBALS" (operating SYStem GLOBALS). “SYSG-
LOBALS” is relative to A5.

An example of the TRY action is taken from the disassembly:

86 POBE 0010 movea.l 16(aB) a0
90 2D58 FFFO mowe.l (ald)+4+-16(aG)
94 ZD30 FFF4 move.l (a0)y-1Z(aB)
98 20BE 000C movea.l 12(aB) a0
102 2D58 FFF8 move.l (a0)+,-8(aB)
106 2D30 Fl moue.l (a0),-4(aB)
110 2F2D FI movesl SYSGLOBALS-10(aS) - (SP)
114 ZFODE movesl aBr-{se)
116 .487a 005A pea Rbase+208
120 - ZB4F FFFG Cmovesl sPySYSGLOBALS-10(45)
124 S88F suba.l #d,s5p
128 Z2F2E FFFO move.,l -16(aB)s-(sp)
130 Z2FZ2E FFF8 move.,l -8B(aB):-(sp)
134 4EBA FF98 Jsr Rbase+32
138 ZB3F FFF8 move.l (sp)+,Gbase-B8(ad)

After the above code has been written, write the code body of the routine.

271

272 The Assembler

The last piece of code must restore the pointer to the previous RECOVER-record and remove
the current one from the stack. Control is then transferred to the instruction following the
RECOVER section. For example:

178
180
184

190
194

200
204
208
210
214
216

220

224

4E76
206E
4cAD
FFF8
4890
2BBF
FFFGB
DEFC
4EFA
2C5F
2BSF
7064
BOGD
BGBOO
4CBA

o008
1EQO

1EQO
Q008
QoQC
00zZ4
FFFB

FFFE
0012
OF 00

trapv
mouvea.l B(aB) rald
movem.w Ghase-B(a%)ral-ad

movem.w al-ad,(a0)
mouve.l B(sp) ,SYSGLOBALS-10(al)

adda.w #12:5P

JmP Rbase+242

mouea,l (sp)+,al

move,l (sp)+,:5YSGLOBALS-10(al)
mouvea #100,d0

cmP.w SYSGLOBALS-2(aS) +d0

bre Rbase+240

movem,w Rbasesa0-a3

If an error or exception does occur, the system stores the number of the error in a location at
“Sysglobals-2(A5)" and looks at ‘‘Sysglobals-10(A5)” to find the location of the RECOVER-
record. This location is loaded into the Stack Pointer register (SP). The location of the RECOV-
ER routine is then popped off the stack and control is transferred to the RECOVER routine. The
next value popped off the stack is the stack frame pointer for the RECOVER routine. It is moved
to A6. Then the higher level RECOVER-record pointer is popped off the stack and moved to
“Sysglobals-10(A5)".

Once these values have been restored, you may examine the value at ‘‘Sysglobals-2(A5)"" and
determine what action to take. If you want to handle the error, you may do so. If not, execute a
“TRAP #10” and the problem will ripple out to be handled by the higher level RECOVER

routine.

Here is the assembly version of the RECOVER routine:

204
208
210
214
216
220

224

230

236
240
242
244
246

dEFA
2C5F
2BSF
7064
BOBD
BEOO
4cBA
FF1C
a8ab
FFFg
G000
4E4A
4ESE
208F
DEFC

Q024
FFFB
FFFE
0012
OFQ0

OF 00

Q0o0d

QO0o0C

Jmp Rbase+242

movea.l (sp)+,ab

move.l (sr)+,S5YSGLOBALS-10(ald)
moves #100,40

cmP.w SYSGLOBALS-2(ad) +d0

bne Rbase+240

movem.w Rbase,al-al

movem,w ad-a3:Gbase-B(ad)

bra Rbase+242
trap #10

unlk ab

movea.,l (sp)+sral
adda.w #12spP

The Assembler

Exception Coding

In your TRY block you may wish to raise certain exception conditions and handle them in the
RECOVER section. This corresponds to the Pascal standard procedure ESCAPE. When the condi-
tion is determined, store a 16-bit integer value representing the error in “SYSGLOBALS —2(A5)”
and execute a TRAP #10. For example:

32 4E41 FFFC trap #1s#-4

36 ZOZE 0o0oC move.l 1Z2(aB) 40

40 DOAE 0008 add,1 B(aG) 40

a4 4E7B trapu

46 2D40 FFFC mouve.,l d0s-4(aB)

50 4AAE FFFC tst.l -4(aB)

54 BCOO DOOA bgse Rbase+BE

38 3B7C 00B4 move vw #100,8YSGLOBALS-2(al)
FFFE

g4 4E4A trap #10

BB 2DBE FFFC move.l -d4(aB)+16(ak)
0010

72 4ESE unlk aB

74 205F mouveas.l (spr)+,a0

76 304F adda.,w #B8,sp

The example generates an escape with escapecode 100 if lines 58-64 get executed. In your
recovery section, check “SYSGLOBALS —2(A5)” to see if you recognize the value. If you do,
make the appropriate recovery. Otherwise, your RECOVER section restores the old RECOVER-
record location and issues another TRAP #10. Thus the error is passed on to the next RECOVER
block.

Returning to Pascal

When returning to Pascal from assembly, the stack must be cleaned up, a function value must
be left on the top of the stack if appropriate, and all Pascal dedicated registers must be restored
(A5, A6 and A7).

You can return to Pascal by leaving the return address on the top of the stack and executing an
RTS, or you can store the return address in an address register and execute a JMP indirect
through the address register.

216 BOBD FFFE cmP.w SYSGLOBALS-Z(al) »d0

220 6BOO 0012 brie Rbase+240

224 4CBA OFOQO0 movem.w Rbase»a0-a3
FFiC

230 48AD OFO0O movem.,w a0-a3:Gbhase-8(ad)
FFF8

236 B0O0OO 0004 bra Rbase+242

240 dE4A trap #10

242 4ESE O unlk aB

244 - 205F movea:l (spl+,al

246 DEFC Qo0C - o addasw #1Zase

250 4EDO . Jme {ad)

252 4E7S doc.w 20085 or desb 78,117 or dceb ‘Nu’

273

274 The Assembler

Declaring External Procedures

Most of the subjects that have been covered in this section are relevant to EXTERNAL proce-
dures.

If you just want to write a routine, put it in “LIBRARY"” and call it from Pascal by declaring it as
EXTERNAL, you won’t need to be concerned with IMPORT text.

You will need to generate EXT and DEF tables. And you will have to deal with parameters. You
may or may not want to deal with local variable space. If you want local space, you will
reference your parameters relative to (A6). Otherwise, reference them relative to (SP). You will
not have to write a module initialization body.

The TRY-RECOVER mechanism is also optional. There’s always a RECOVER routine some-

where that has to handle those errors. The Operating System puts one around your program
before execution.

You must be concerned with the stack. All the parameters must be removed. It must be left in
the condition it was in before the calling procedure started preparing for the call.

You must be concerned with restoring A5 and A6 to their original values.

Write the routine, assemble it, and use the Librarian to put it in “LIBRARY”’. From Pascal,
declare it as EXTERNAL. Call it just as if it were a Pascal procedure.

Just remember — if you’re not using standard types, every program that calls this routine will
have to define the special types just as you had originally defined them.

The Assembler

Instruction Format
In General

Assembly instructions are written one per line. Upper and lower case characters may be used
interchangeably except inside of quoted strings. Instructions are free format with respect to
spaces.

If a label is present, it must start in column 1 of the line. The opcode must start in column 2 or
later. Blanks are not permitted within the operand field. The first blank encountered after the
start of the operand field begins the comment field.
1234567890123456789 0 12345678901234567890
Label MOVE Al sAZ Comment field

A “*” in column 1 indicates a comment.

1234567890123456789 0 12345678901234567890

*
* These are comment s .
*

Symbols

Symbols must begin with an alphabetic character, but may contain letters, numbers, “‘@”’, “$”” and
“_’. Symbols may contain any number of characters. The restriction is that each instruction must
be contained on one line.

“*”” is a symbol having the value of the location counter (except when in column 1).

Symbols are either absolute, relative, or predefined register symbols. An absolute symbol is defined
as one which either follows an ORG pseudo-op or is equated to an absolute expression. A relative
symbol is one which follows a RORG pseudo-op or is equated to a relative expression. The
pseudo-ops REFA (absolute) and REFR (relative) are used to define the type of external symbols.
Register symbols are A0...A7 and DO...D7.

Opcodes

Mnemonic operation codes (opcodes) and their syntax are defined in the MC68000 User’s Manual.
The Assembler does not allow abbreviated opcodes as does Motorola’s assembler. Size suffixes are

only allowed for those operations which include a size field in the instruction and for the Conditional
Branch (Bcc).

Size Suffixes

Size suffixes are used in the language to specify the size of the operand in the instruction,
including addressable locations and registers. All instructions that can operate on more than
one data size will assume the default size of word (16-bits) unless a size suffix is used. Size
suffixes can also be appended to address register specifications when used in indexed addres-
sing.

275

276 The Assembler

Operand sizes are defined as follows:

B - byte = 8 bits
W - word = 16 bits
L - long word = 32 bits

The suffix is appended to the opcode or address register specification, and separated from it by
a period.

The Branch instructions (BCC, BRA, BSR) are automatically two word instructions on forward
branches unless a ‘*.S’’ suffix is attached to the opcode. The Assembler chooses the appropriate
instruction size for backward branches.

Expressions

Expressions are limited to the operators ““‘+ ", ="' “‘I'"" (bitwise OR), and “&’’ (bitwise AND).
Expressions are evaluated in strict left to right order, and parentheses are not allowed. Only one
external symbol, or symbol equated to an expression containing an external, is allowed in an
expression.

=y

Addressing Modes

Addressing modes are described in detail in the MC68000 User’s Manual. The following descrip-
tions are of the syntax requirements of the various addressing modes.

Register Direct
Specifies that the operand is in one of the 16 general purpose registers.

[register
i identifier

Item | Description | Range Restrictions

register identifier

A two character mnemonic representing a processor | AQ...A7, DO...D7,
register SP, SR, PC

The Assembler

Address Register Indirect
The address of the operand is in the specified address register.

address
register identifier

Item | Description | Range Restrictions

A two character mnemonic representing a processor | A0...A7
address register

address register
identifier

Address Register Indirect with Postincrement
The address of the operand is in the specified address register. The contents of the address register
are incremented by 1, 2, or 4 depending upon the size suffix after the operand is used.

|(:)|| address |()II
register identifier) +

Item I Description | Range Restrictions

A two character mnemonic representing a processor | A0...A7
address register

address register
identifier

Address Register Indirect with Predecrement
The address of the operand is in the specified address register. The contents of that register are
decremented by 1,2, or 4 depending upon the size suffix before the operand is used.

- (address
register identifier

Item I Description I Range Restrictions
address register A two character mnemonic representing a processor | A0...A7
identifier address register

Address Register Indirect with Displacement
The address of the operand is the sum of the address in the specified address register and the 16-bit
sign extended displacement.

) address
displacement 0 register identifier o

Item | Description Range Restrictions
displacement Expression -2 thru 215-1
address register A two character mnemonic representing a processor A0...A7

identifier address register

277

278 The Assembler

Address Register Indi{ect with Index l

The address of the operand is the sum of the address in the specified address kegister and the 8-bit
sign extended displacement and the contents of the specified index (A or D) register. The index is
used as a 16-bit sign extended value unless ‘“.L”’ is appended to the register specification. A
displacement must be specified.

di 1 + address register
isplacemen register identifier identifier

Item Description Range Restrictions
displacement Expression —27 thru 2°-1
address register A two character mnemonic representing a processor | AO...A7
identifier address register
register identifier A two character mnemonic representing a processor | AO...A7, DO...D7,
register SP,
Absolute Short Address

A 16-bit sign extended address.

expression

Item1 | Description | Range Restrictions
expression | Absolute expression | — 21 thru 2151
Absolute Long Address

A 32-bit address

l > ’ >]I expression I—H

Item | Description . | Range Restrictions
expression l Absolute expression | - 23! thru 23'-1

The Assembler

Program Counter with Displacement
The address of the operand is the sum of the program counter (*) and the sign extended 8 or 16-bit
displacement integer.

expression

relative
symbol

Item | Description Range Restrictions
expression Absolute expression -2 thru 21°-1
relative symbol Symbol within the program See “Symbols”

Program Counter with Index

The address of the operand is the sum of the program counter, the sign extended 8-bit displace-
ment value, and the value in the specified index (A or D) register. Only the low 16 bits of the index
register will be used unless .L is appended to the index register specification.

o r

. register
[ooression] - O+ ~()~

Item | Description I Range Restrictions

Relocatable expression — 2% thru 2% -1
expression must
evaluate to within

+ 128 of the
current PC value

expression

279

280 The Assembler

Assembler Pseudo-Op Reference

The following is a list of the commands which direct the assembler to take the described actions. For
a list of the Assembler-language and machine-language instructions, see the MC68000 User’s
Manual.

COM

Used to define a global area.

CCOD—D-L symbol

Item | Description | Range Restrictions

symbol An identifier for the global area see “‘Symbols”

size A numeric expression 231 thru 231 -1
Semantics

The exact location of the global area will be determined at link time. The symbol is DEFined as an
entry point. The amount of space is specified by the absolute value of the expression. If size is
negative, the value of the symbol will be the offset from (A5) to the top of the global area and
variables will have negative offsets from the symbol. This is how the Compiler does it. If size is
positive, the symbol’'s value will be the bottom of the area, relative to (A5), and offsets will be
positive. Only one COM statement allowed per assembly.

The Assembler

DC

Used to define some constant value or values, including string literals, and place them in storage.

(D=
-\

expression

string literal

Item Description Range Restrictions
label An identifier for the constant see “‘Symbols”’
value An expression that can be evaluated in pass 1 —231 thru 231 -1
string literal A string of characters The instruction must
be contained on one
line
Semantics

Size suffixes may be used to specify the units of storage into which the values will be justified for
storage. In the case of string literals, the amount of storage needed will be determined by the
Assembler and each character will be assigned into a unit.

DECIMAL

Causes addresses in the listing to be printed inn decimal rather than in hex notation.

DECIMAL 1

281

282 The Assembler

DEF

Defines a label or list of labels as entry points for other modules.

=t

Item | Description | Range Restrictions

label | An entry point identifier see “‘Symbols”’

DS

Reserves storage space.

- } expression |—>-|

Item | Description Range Restrictions

label An identifier for the data space see “‘Symbols”

number An expression that can be evaluated in pass 1 0 thru 231 -1
Semantics

The units of space are specified by the size suffix. The number of units is determined by the
expression.

The Assembler

END

Indicates the end of the assembly. This should be the last line of the assembly.

EQU

Assigns the value and attribute (absolute or relative) of the expression to the label.

I label I—h—(EQU)—’-Lexpressionj—b—l

| Range Restrictions

Item I Description
label An identifier see “‘Symbols”
value An expression that can be evaluated in pass 1 —230 thru 231 -1

INCLUDE

Specifies a file to be merged into the assembly at the point where the instruction is located. The
. TEXT suffix will be automatically appended to the file name. The INCLUDEJ file may not contain

another INCLUDE.

INCLUDE}—D-I file name l—b—{

283

284 The Assembler

LLEN

Used to specify the line length (column width) of your printer.

(LLENH length I—>-|

LIST

Turns the printer listing back on. You must have requested a listing when the Assembler was

initiated for this to have an effect. LIST is used with NOLIST to exclude blocks of text from the
listing.

The Assembler

LMODE

Specifies a symbol or list of symbols to be accessed using long absolute addressing mode. Overrides
short addressing and PC-relative mode implications of REFR, ORG, and RORG.

Item | Description | Range Restrictions

symbol I A location identifier | see “Symbols”

LPRINT

(Default) Causes all output from DC statements to be printed. (See SPRINT)

LPRINT

285

286 The Assembler

MNAME

Used to assign a name to an Assembler module. The default is to assign the file name to the
module.

@NAMEH module name }—H

NOLIST

Turns off the listing until a LIST is encountered.

NOLIST

The Assembler 287

NOOBJ
Requests that no object code be produced.
NOSYMS

Inhibits the listing of the symbol table at the end of the program.

288 The Assembler
ORG

Specifies an absolute origin. When used with the “.L” option, it forces long mode addressing for
forward and external references. Otherwise short absolute addressing mode is implied.

o ~{ absolute | >
ORG o o origin

Item

| Description I Range Restrictions

| A numeric expression that can be evaluated in pass 1 | —2% thru 231 -1

absolute origin

PAGE

Advances listing to top of next page. This command will not be printed on the listing.

The Assembler

REFA

Defines a symbol or list of symbols as external and absolute references. The size of the effective
address is implied by the ORG statement.

-

Item | Description | Range Restrictions

symbol | A location identifier I see “‘Symbols”

REFR

Defines a symbol or list of symbols as external and PC relative references.

(REFR symbol

Item I Description | Range Restrictions

symbol | A location identifier | see “Symbols”’

289

290 The Assembler

RMODE

Specifies a symbol or list of symbols for access using PC-relative addressing. Overrides all other
addressing mode specifications.

(RMODE symbol

Item | Description

symbol | A location identifier

| Range Restrictions

| see “‘Symbols”

RORG

Sets a relocatable origin. Using the 'L’ option, forces long absolute addressing mode for forward
and external references. Otherwise, PC-relative addressing mode is implied for forward references
and short absolute addressing mode for REFA symbols.

- | relocatable
(RORG) l g j '{ origin | >

Item | Description

I Range Restrictions
relocatable origin | a numeric expression that can be evaluated in pass 1 | -2% thru 231 -1

The Assembler

SMODE

Specifies a symbol or list of symbols to be accessed using short absolute addressing mode. Over-
rides all other addressing mode specifications.

Item I Description l Range Restrictions

symbol | A location identifier l see ‘‘Symbols”

SPC

Directs the assembler to generate the specified number of blank lines. Used to separate blocks of
code or blocks of comments on the listing.

number of
C Spc)"'I blank |ines]_"‘

SPRINT

Print only the first line of output for the DC statements. Otherwise, each word used to store the
constant is printed.

291

292 The Assembler

SRC

Used to specify the IMPORT text information which the Compiler needs when importing the
module. Use one SRC for each line of IMPORT text. (see programming section)

() l line of l i
SRC export text

START

Specifies a start location for execution of the main program. Use only in the main program.

start
CSTART) > I location I >

Item Description Range Restrictions

start location An integer numeric or symbolic expression - 231 thru 231 -1

TTL

Specifies a title to appear on each page of the assembler listing.

GO}~

The Assembler

The Examples

Listings of the two programs and two modules are given here and also have been provided on the
documentation disc (DOC:). On the disc they are provided in source and object form. The file
(ASMB_P1) imports the file (ASMB_M1). These are both Pascal files. The Pascal file (ASMB_P2)
imports the Assembler language file (ASMB_M2).

If you want to see them work, you must either use the Librarian to link the modules to the
programs, P-load the modules, or put the modules in the current System Library. You can then
execute the two programs.

The Sample Pascal Programs
This Program Imports the Pascal Module

$search ‘#3:ASMB_M1
Prodram test{inputsoutput)i
Import simples
var isdsKk & recs
bedin
initializes
ivile=13 1i,i2:=23%
Jeil:=35 J.i2i=4d3}
add(isdsK) 3
writeln(K,ilsK.1i2)
end.

This Program Imports the Assembly Module

$search ‘#3:ASMB_MZ
Prodram test(inPutsoutpPut)s
Import simplels
var isds+K 1 reciH
bedin
initializes
iv.ile=13 1i,1i2:=23%
Jeil:=3F J.iZ2:1=4d}
add{(isdsk)3
writeln(K.ilsK,i2)
end.

293

294 The Assembler

The Sample Pascal Module

$svsProd$ (¥to enable trvy-recover#*)

module simples

exPort
tyrPe
rec = record
il: inteders
iZ: inteders
end}
const
zero = rec [11:0,12:013
var

lastresult: recs

procedure initialize$
procedure add (a:b: reci wvar out: rec)s

imPlement
var
sum: recs
procedure initializes
bedgin sum 3= zero endj

function partadd (xsv: inteder): inteders’
var tempP: inteder}

begin
tempP 1= x+vi
if temp < O then escaprpe(100)3

partadd := temp3
endi (*partadd*)

procedure add (ashb: reci var out: rec)i
bedin
try
lastresult,il := partadd(a,il,b.il)
lastresult.i2 := partadd(a.i2,b.1i2)
sumeil = sum.il+lastresult.ils
sum.12 1= sum.i2+lastresult.i2i
out = lastresults
recover
if escarecode = 100
then lastresult := zero
else escare(escarecode) i
endi (¥add*)

end.,

The Assembler
The Disassembly of the Module
Librarian [Rev. 2.0 19-0ct-821 19-0ct-82 9: 7:14 Pade 1
MODULE SIMPLE Created B8-0ct-82
NOTICE: (none)
Produced by Pascal Compiler of 20-Sep-82
Rewision number 2
Directory size 172 brtes
Module size 3072 brtes
Module NOT executable
Code base 0 Size 254 brtes
Glokal base O Si 16 bytes
EXT klock 3 Size 20 brtes
DEF block 3 Siz 114 bvtes
EXPORT block 1 Size 192 brtes
Thare are 1 TEXT records
TEXT RECORD # 1 of ‘SIMPLE’:
TEXT start hlock 2 Size 254 brtes
REF start block 4 Size 42 brtes
LOAD address Rbase
Q0000 deew O . or dec.b 0,0 or dc.b 7 !
2 0000 desw O or dec.b 0,0 or dec.b !
4 0000 decsw O or dec.b 040 or de.b !
B 0000 desw 0 or de.b 040 or dc.b !
8 0000 dc.w O or dcsb 00 or de.b !
- = = = = - = & - - = - - - = - -« 4 = - - - - - - - SIMPLE_INITIALIZE
10 4E41 0000 trap #1#0
14 4CBA OFO0O movem,w Rbasera0-a3
FFEE
20 48AD OFO0O0 movem.w a0O-a3:Ghase-16(as)
FFFO
26 4ESE unlk aB
28 4E7% rts
30 0000 de.w O or dc.b 0,0 or dc.b !
32 4ed41 FFFC trap #1#-4
36 ZOZE 000OC move,l 12(aB) +d0
40 DOAE 000B add,1 B(aB) »d0
44 4E76 trapru
46 ZD40 FFFC move.l d40,-4(aB)
S50 4AAE FFFC tst.1l -4(aB)
54 BCOO 000A bkde Rbase+G6
58 3B7C 0064 move.w #100,5YSGLOBALS-Z(al)
FFFE
G4 4E4A trap #10
66 2DBE FFFC mouve.l -4(aBG)+16(aB)
0010
2 dESE unlk a6
74 205F movea.l (sp)+sal
76 S04F adda.w #B:sP
78 4EDO dmp (ao0n)
80 0000 decew O or dec.b 040 or dc.b !

295

296 The Assembler

Librarian

82

86

90

a4

98
102
106
110
114
116
120
124
126
130
134
138
142
144
148
152
156
160
164
168
170
174
178
180
184

190
194

200
204
208
210
214
216
220

224
230

236
240
242
244
246
250
e

L08

[Reu.

4e41
Z0OBE
2DS8
2Ds0
206E
2D58
2D50
ZF2D
ZFOE
487A
Z2B4F
598F
2FZE
2F2E
4EBA
ZBSF
S98F
ZF2E
ZF2E
4EBA
ZBSF
202D
D1AD
4E786
202D
D1AD
4E7B
20GE
4CAD
FFF8
4890
ZBGF
FFFB
DEFC
4EFA
Z2CS5F
ZBSF
7064
BOBD
BGOO
4CBA
FF1C
48AD
FFF8
GOOO
dE4A
4ESE
205F
DEFC
4EDO
4eE73

FFFO
0010
FFFO
FFF4
QO0C
FFF8
FFFC
FFFB

005A
FFFB

FFFO
FFFB
FFo8
FFFB

FFF4
FFFC
FF86
FFFC
FFF8
FFFO

FFFC
FFF4

ooo0s
1EQOQ

1EQO
o008

000C
0024

FFFG
FFFE
0012
QFOO0

OF0O0

0004

000c

2.0

19-0ct-B21

19-0ct-82 9: 7:14

- = = = - = - - - - - - SIMPLE_ADD
trap #1,4#-16

movea,l 1G(aB) a0

move.,l (a0)+,-16(aB)

move.,l (aQ®),-12(aB)

movea.l 12(aB) a0

mouvesl (a0)+,-B(aB)

mouve.l (a0)-d(aB)

moue.,l SYSGLOBALS-10(a3):-(sP)
move,l aGi-(spP)

pea Rbase+208

mouves.l spySYSGLOBALS-10(al)
suba,l #d,sp

move,l -1G6(aB)-(sP)

move,l -B(aB)s+-(sP)

Jsr Rbase+3Z

mouve.l (sp)+ Ghase-8(ab)
suba,l #dysp

move,l ~12(aB)+~(s5P)

move.l -4(aB)+-(spP)

Jsr Rbase+32

move.l (sp)+:Ghase-4(al)
mouve,l Ghase-B8(aS) d0

add.l d40,Gbase-16(a%)

trapu

moue.l Ghase-4(a3) 40

add.1 d0,Gbase-12(al)

trarv

movea.,l 8(aB) a0

movem.,w Ghase-8(a3)sal-ad

movem.w al-ad,(ad)
moues]l B(sp) +SYSGLOBALS-10(ad)

adda.w #12,5pP

Jmp Rbase+242

movea.l (sPp)+sal

mouves,l (sp)+,SYSGLOBALS-10(ad)
movea #100,40

cmp.w SYSGLOBALS-2(aS) »d40

bre Rbase+Z240

movem.w Rbasesra0-a3

mouem.w a0d-ald,Gbase-B8(al)

bra Rbase+2d4Z

trap #10

unlk ab

movea.l (sp)+sal

adda.w #12ss5P

Jmp (ao0)

dc.w 20085 or dc.b 784117 or

rPade

dec. b

ol

Ny’

lastresu

lastresult_il
lastresult_i2

The Assembly Language Module

mname simplel

rc

rc
rc
rc
re
rc
rc
rc
rc
rc
rc
rc
re
rc

Wl wn o non o

com
def
def
def

refa

1t

module simple2i
rc exrort

tyPe
rec = record
il : intederi
i2 : inteders
ends’
const
zero = reclil:0,i2:013
var
lastresult @ reci
procedure initializes
procedure add(asb : reci
var out i rec)?

end?’
simple2s-16
simple2_add

simple2_initialize
simpleZ_zerossimpleZ_simplel

s¥ysdlobals

equ simple2-8
equ simple2-8
eqau simple2-4

sum equ simple2-16 (all arerelative to a3)
sum-il equ simpleZ-16
sum.iZ2 equ simPleZ2-12
escarecode equ svsdlobals-2
recover_rec equ svsglobals-10
rord 0
simpleZ_zero de.l 0,0
simpleZ2_initialize trap #1 (stack check)
de.w O (no local space)

movem,1l simpleZ_zerorat-al

movem.1l a0-alssum(al)

unlk
rts

ab

simpleZ_Partadd trap #1

result
X

¥

ret_addr

dcw

-4
equ 16
eau 12
equ 8 (all are relative to aB)
eau 4

The Assembler

297

298 The Assembler

dyn_link
temp

move.l x(aG) ,do
y(aB) +d0

add.1
traru
mouve.,l

tst. 1

tempP(aB)

¢]
-4

equ
equ

(tempi=x+y)

(overflow check)

d0stempr (ab)

(1f temp<0)

bde Past_escare
move #100;escarecode(al)

trap #10

rpast_escare

mouvea.l

(then escare 100)
move,l temp(aB)sresult(aB)

(partaddi=temp)

ret_addr(aB) a0

unlk aB
adda.l #1Z4s5p
Jdmp (a0)
simpleZ_add trarp #1 (stack check)
de.w -16 (for pParam coprpies)
a.addr eau 16
b.addr eaun 12
out_addr eqau 8
ret_addr2 eaqu 4
dynm_link2 equ 0O (relative to aB)
b_i2_copPv equ -4
b_il_copy eau -8
a_i2_.copy equ -12
a_il_copvy equ -1G6
movea.l a_addr(aB) a0 (makind local
move,l (aO)+sa_il_copv(ab) copies)
move.l (a0)ra_.iZ_coprv{ab)
movea.l b_addr(aB) a0
move.l (a0)+sb_il_corv(aB)
move.l (a0)sb_iZ_corv{aB)
mouesl recover_rec{ad)s-{sP) (TRY)
mouve.l aBs-(sp)
Pea recouver.addr
moue.,l sPsrecover_rec{al)
suba.l #d,s5pP {calling Partadd)
move.l a.il_.corv(aB),-(sp)
moue.l b_il_corv(aB):-(sp)
Jdsr simple2_pPartadd

mouve.l

suba.l #d,5p

moue,l

(sPpl+slastresult_il(as)

(calling Partadd)
a_i2_copry(ab)s-(sp)

move.]l b_iZ2_copv(aB)s-(spr)
Jsr simpleZ_partadd
move.l (sp)+slastresult_i2{ad)

move.] lastresult_il(ad) ,d0 (sum:=

add. 1 d0ssum_il1(al) sum+rlastresult)

trapu

mpue.l lastresult_i2(aS),do0
add.l dOssum_i2(alS)

traruv

movea.,l out_addr(aBG) a0
movem.l lastresult(ad),al-a2

movem,1 al-aZ,(a0) (out:=lastresult)

mouve.]l B(spP)srecover_rec(ad)

adda.]l #12,sp (end of TRY)

Jmp rast_recover

recover_addr movea.,l (sp)+s+ab (RECOVER)
moue.l (sp)+srecover_rec(ad)
mouea #100,40 (if escarecode=100)
cmPp.Ww escaprecode(ad) +d0
tre sys_error

mouvem,l simpleZ_zerora0-al

* (then lastresult:=0)

mouvem,l ab-alslastresult(al3)

kra prast_.recover
SYS_.€rTor trar #10 (else escare)

Past..recover unlk aB
movea,l (sp)+,al
adda,1l #1Z,sp
dmp (aQ)

simpleZ_simplel rts (initialization bodvy)

end

**¥% GBOOO ASSEMBLER SYMBOL TABLE DUMP **#%

EXTERNAL SYMBOLS

SYMBOL TYPE DEF YALUE
SIMPLEZ ABS 19 00000001
SYSGLOBALS ABS 25 00000002

INTERNAL SYMBOLS

SYMBOL TYPE DEF EQU SYM
AOD AREG 0
Al AREG 0
A2 AREG 0
A3 AREG 0
Ad AREG 0
AD AREG 0
AB AREG 0
A7 AREG 0
A_ADDR ABS g0
A_T1_COPY ABS 88
A_I2_COPY ABS 87

B_ADDR ABS 81

VALUE
00000000

FFFFFFFO
FFFFFFF4

The Assembler

299

300 The Assembler

B_I1_COPY
B_I2_COPY
CCR

DO

D1

D2

D3

D4

DS

D6

D7

DYN_LINK
DYN_LINKZ
ESCAPECODE
LASTRESULT
LASTRESULT_I1
LASTRESULT_I2
OUT_ADDR
PAST_ESCAPE
PAST_RECOVER
RECOVER_.ADDR
RECOVER_REC
RESULT
RET_ADDR
RET_-ADDR2
SIMPLEZ_ADD

SIMPLE2 INITIALIZE REL

ABS
ABS
STREG
DREG
DREG
DREG
DREG
DREG
DREG
DREG
DREG
ABS
ABS
ABS
ABS
ABS
ABS
ABS
REL
REL
REL
ABS
ABS
ABS
ABS
REL

SIMPLEZ2_PARTADD REL

SIMPLEZ .SIMPLEZ

SIMPLEZ_ZERO
SP

SR

SUM

SUM_TI1
SUM_IZ2
SYS_ERROR
TEMP

usp

v
l

REL
REL
AREG
STREG
ABS
ABS
ABS
REL
ABS
STREG
ABS
ABS

86
85

49
145
38
Q

30
31
3z
138
37
0
53
54

SYSGLOBALS
SIMPLEZ
SIMPLEZ
SIMPLEZ

SYSGLOBALS

40

SIMPLEZ2
SIMPLEZ
SIMPLEZ

+ o+ o+ 4+

+

FFFFFFFB
FFFFFFFC

FFFFFFFE
FFFFFFFB
FFFFFFFB
FFFFFFFC

0DO00000B6
FFFFFFFO
FFFFFFFO
FFFFFFF4

Chapter

7

The Librarian

Introduction
It may seem obvious that the Librarian’s purpose is to manage libraries. However, all the things that
it can do to fulfill this responsibility may not be as obvious. This chapter will help to put all of the
Librarian’s capabilities into perspective. The chapter first describes libraries and object modules,
providing some relevant background information that will help you to understand the Librarian
operations described in the latter sections of the chapter.

Here is a brief overview of the operations you can perform with the Librarian:

e Add object modules to or remove them from libraries. For instance, you can add object
modules to the System Library so that the modules will be found and loaded automatically
when any program that imports them is loaded for execution.

¢ Link the directories of the object modules in a library file. This operation reduces the file’s size.

e Obtain detailed information about the object modules in a library file. For instance, you can
unassemble a compiled Pascal object file and get the Assembler language object code.

o Create new system Boot files. This operation is used to create files that are found and loaded
by the Boot ROM and in turn load a system.

Let’s look more closely at library files, what is in them, and how to use them.

Prerequisites

This chapter presents simple examples of user modules and libraries. If you find that you want more
information about modules as you read this chapter, read the sections of the Compiler and
Assembler chapters that describe modules.

If you are going to be using the Librarian for purposes other than adding modules to and removing
them from the System Library (usually LIBRARY) or Initialization Library (BOOT:INITLIB), then
you should also be familiar with the concepts presented in the Assembler chapter.

301

302 The Librarian

Library Overview

This section presents some important terms and concepts you will need to know in order to
understand libraries. It will help you see when and why you will need to use the Librarian.

Modules and Libraries

Libraries are object files. They contain zero or more object modules. Object modules are the
product of the Compiler or Assembler’. For instance, compiling a Pascal source module generates
an object module which is placed in an object file. This file is actually a library, because it contains
an object module.

An object file is composed of a directory of the module(s) that it contains, followed by the object
modules themselves. Here is a pictorial representation of an object file.

OBJECT FILE

Library Directory
Object Module Directory | 7
Define Source

Ext Table

Def Table
Text Record

Ref Tables > Object Module
°
[]
)

Text Record

Ref Tables S

The terms Define Source, Ext Table, and so forth are defined in the Glossary of Object Code
Terminology at the end of the chapter.

What the Librarian Does

The Librarian’s purpose is to manage object modules. The Librarian can also produce object files;
however, these files consist of object modules produced by the Compiler or Assembler. It can
create library files and add modules to them or remove modules from them. The intent of these
libraries is to provide a convenient location to store object modules. The following drawing shows
the relationship of object modules in an object file (library):

1 Complete descriptions of how to produce and use Pascal and Assembler modules are provided in the Compiler and Assembler chapters.

OBJECT FILE

Library Directory

Object Module Directory

Define Source

Ext Table e o 0 Ext Table
Def Table Def Table
Text Record Text Record
_____ Ref Tables | | Ref Tables |

Text Record

Ref Tables

Object Module Directory

Define Source

Text Record

Ref Tables

The Librarian

303

Example Modules

For this example, we will be using three example library modules provided on the DOC: disc
shipped with your system. One contains a compiled program (PROG_1.CODE), and the other two
contain compiled modules (MOD_2.CODE and MOD_3.CODE).

The DOC: disc also contains the source versions of these modules. Although this chapter will only
be dealing specifically with the object versions, it is a good learning experience to compile the
source versions to see how the Compiler deals with imported modules. One method is briefly
outlined in the next section.

Here are source listings and brief explanations of each of the example modules.
Source Listing of PROG_1.CODE

PROGRAM ProgramOne (OUTPUT) 3§
IMPORT ModuleTwo}

BEGIN
WRITELNS
WRITELNS
WRITELN(‘*#%% %% %% %% %%%%%% ProgramOne #*E¥EXXX¥X%NX%%')]

TwolLiness
WRITELN("% %% %% %% %% %% %% %% ProdramOne **¥*%¥XXKXXX%%%')]

END.

304 The Librarian

The example program imports ModuleTwo, which declared the procedure named TwoLines. Here

is the source of ModuleTwo, which was compiled and stored in the library (object-code) file named
MOD_2.CODE.

Source Listing of MOD_2.CODE
MODULE ModuleTwoj

IMPORT ModuleThrees

KPORT
PROCEDURE Twoliness

IMPLEMENT

PROCEDURE Twolinesi
BEGIN

WRITELN(’I came from ModuleTwo and broudght this:’)j
Thirdbinesd

END 3

END.

ModuleTwo exports procedure TwoLines, which is used by ProgramOne. It also imports Mod-

uleThree, which declares procedure ThirdLine and is in the library (object-code) file named MOD_
3.CODE.

Source Listing of MOD_3.CODE

MODULE ModuleThrees

KPORT
PROCEDURE ThirdLine}

IMPLEMENT

PROCEDURE ThirdLines
BEGIN

WRITELN(’'I came from ModuleThree ‘)3
END

END.

This module exports procedure ThirdLine, which is imported by ModuleTwo. Notice that it does
not import any modules.

Here are the results of running the program.

EFXFEXRREXXEX%%% Prodramne ¥ FEXXXRKXEXEERS
I came from ModuleTwo and broudht this:
I came from ModuleThree

HEEEEARREAXRN%E%% Programne #EFHXREXAREAXXRXH¥

The Librarian

Here is what happens when you run ProgramOne. First, ProgramOne prints two blank lines and
then the line of asterisks that contains its name. The procedure TwoLines, imported from Module-
Two, is then called; it prints the message: I came from ModuleTwo and brought this:.
Procedure ThirdLine, imported from ModuleThree, is then called; it prints the message:
I came from ModuleThree. Control is then returned to TwoLines and then to the program,
which again prints out its name in asterisks.

Let’s take a look at what is needed in order for you to compile and run the program.

Compiling and Running the Example Program
When a program (or module) imports modules, the imported modules must be accessible at two
times:

® When the program is compiled.

® When the program is loaded and run.

Let’s take a look at what happens at these two times.

How the Compiler Finds Imported Modules

At compile time, the Compiler searches for each module imported by the source program (or
module); more specifically, it searches to find each module’s “interface text.”” Here is the order of
the places where the Compiler looks in search of interface text:

1. In the source text being compiled. (The source text of modules and programs can be
combined into one source file, as long as the modules precede the program and are in proper
sequence.)

2. In object files specified in a SEARCH Compiler option.

3. In the object file currently designated as the System Library.

(A module’s interface text consists of the MODULE name, the IMPORT section, if present, and
EXPORT section; these sections are part of the object module produced when the module was
compiled or assembled. See the subsequent section called Getting Detailed Object File Information
and the Compiler or Assembler chapters for a more complete description of interface text.)

305

306 The Librarian

Here is a strategy (and the method actually used) for compiling these source modules and program.
(Note that you will be learning these Librarian operations in the subsequent examples given in this
chapter, so you will probably want to perform this compilation exercise after working through the
examples using the object modules and program).

1.

w

‘U'!

Compile ModuleThree first (MOD_3.TEXT); call it MOD_3.CODE for simplicity. Since this
module does not import any others, it will be compiled with no need to search for any
imported module’s interface text.

Use the Librarian to add the resultant object module (MOD_3.CODE) to the library file
currently designated as the System Library. (Actually, you will be creating a new library into
which you will place ModuleThree and the modules in the current System Library; this type
of operation is subsequently explained in this chapter.)

After merging these two libraries (into a third new library), you will need to do one of two
things: use the What command to make the resultant library the System Library; or use the
Filer to change the resultant library’s name back to the name of the current System Library.

Next, compile ModuleTwo (MOD_2.TEXT); call it MOD_2.CODE. The external references
to ModuleThree will be resolved when the Compiler finds the object ModuleThree in the
System Library.

Then place this compiled module in the System Library as in steps 2 and 3.
Compile the program (PROG_1.TEXT). Since both object modules upon which this prog-

ram depends are in the System Library, they will be accessed automatically by the Compiler
when the program is compiled.

Run the program. The loader automatically looks in the System Library in order to resolve
the external references; it loads the modules required to complete the program (in this case,
ModuleTwo and ModuleThree).

Since the program and modules have already been compiled and the object files placed on the
DOC: disc, we will not discuss other alternatives of making the source files accessible to the
Compiler. (However, you are again encouraged to do this after learning how to use the Librarian.)

Let’s look now at how the loader finds imported object modules when the program is to be loaded
for execution.

The Librarian

How the Loader Finds Imported Modules

Since a compiled program contains no record of where the Compiler found the imported modules,
the loader must find the imported object modules at load time. Here is the order of the places where
the loader looks:

1. Modules that are part of the object file being loaded.

2. In modules already P-loaded in memory, which includes all INITLIB and Operating System
modules. (The loader searches for these modules in reverse order to which they were
P-loaded; in other words, the most-recently loaded modules are searched first.)

3. In the current System Library file.

In order to make all imported modules part of the object file that uses them (alternative 1 above),
you have two choices:

e Combine the source modules into one source file (and compile it). You can use the Editor to
add each imported module’s source file to the source program. You can also use an INCLUDE
Compiler option in the source program to include each imported module’s source file in the
compilation of the program.

e Combine the object modules into one object file. Use the Librarian to combine the program
and imported modules into one object file; you can optionally Link the modules to save space.

With both of these methods, only the file containing the program need be loaded; and when the
program is finished, the memory used by the modules can be reclaimed for other purposes. With
P-loaded modules, this is not possible (without re-booting).

If you want to P-load modules to make them accessible to the loader, you will only need to P-load
all modules which are not in one of the three places stated above. In the example modules already
given, ProgramOne imports ModuleTwo, and ModuleTwo imports ModuleThree. In the second
example that follows, you will be creating a library that contains these two modules and then
P-loading the library. (You can alternatively P-load MOD_3.CODE and MOD_2.CODE, in that
order, which does not require use of the Librarian.) The loader will then be able to link the modules
contained in the library to any program that imports them at execution time.

In general, the most convenient way to use modules is to place them in the file that is currently
designated as the ‘“System Library,” which is the third alternative shown above. (The default
System Library is the file named “LIBRARY”’ found on the system volume at power-up. You can
also change it with the What command and the Main Command Level.) This is probably the most
common reason for using the Librarian. In the first example that follows, you will add modules
ModuleTwo and ModuleThree to the LIBRARY file and then run the program.

Subsequent tutorials also describe unassembling these library files and creating system Boot files.

307

308 The Librarian

Entering the Librarian

The Librarian is provided on the ACCESS: disc shipped with the system. To use the Librarian, you
will first need to put it on-line: either place the disc labeled ACCESS: in a drive, or copy the
LIBRARIAN file to another location (such as a hard disc) and use the What command (at the Main
Command Level) to specify this copy as the system Librarian. After doing either of these, pressing
(_L) directs the system to load and execute the Librarian program.

Here is the Librarian’s main prompt:

()
Librarian [Revs, 3.0 15-Apr-841] 15-Arr-84 8:11:58
Q Quit
P Printout OFF PRINTER:LINK,ASC
0 Output file: (none)
B write to Boot disk
H file Header maximum size: 38
I Input file: (none)

Copvridht 1984 Hewlett-PacKard ComPanv.
command”?

. >

The commands shown on the left-hand side of the screen are invoked by pressing the correspond-
ing key. You will see how to use all of them in the following tutorial discussions. All commands are
summarized in the Librarian Command Reference.

The Librarian 309

Setting Up Mass Storage

You will often need two on-line mass storage volumes when using the Librarian. If you only have
one volume in your system, you may need to set up a memory volume. This discusson tells why
two volumes may be needed and then outlines how to estimate the size of the volumes required.

When you combine the object modules in two libraries using the Librarian, you actually create a
third (new) library and then copy into it the desired modules from the other two libraries. For
instance, suppose that you want to add the CONFIG:RS232 module to the BOOT:INITLIB library
file. You will first create a new library, and then add the existing INITLIB modules and the RS232
module to this new library. This new library must not be taken off-line during the entire process.

Thus, two separate volumes are often necessary for these two reasons:

@ The sum of all source libraries plus the new destination library often exceeds the capacity of
one volume.

® The destination volume must not be taken off-line during this entire operation.

Continuing with the preceding example, suppose that you have only one mini-disc drive on-line
(the capacity is approximately 1050 sectors). The operation cannot usually be completed, because
one mini disc is not large enough to contain the modules in the INITLIB file (let's assume 750
sectors), the RS232 module (approximately 25 sectors), and the new INITLIB file (roughly the sum
of 750 and 25 sectors). You will need two volumes for the process.

If you don’t have two disc drives (or one with sufficient space), you can create a memory volume. It
is usually more convenient to use the memory volume as the destination volume. In this case, you
could create one with a specified size of 400 blocks, or 200 Kbytes. (Remember that memory
volume blocks are 512 bytes each, while mini-disc sectors are 256 bytes each.) See the Memvol
command in the Overview chapter for more specific details on creating memory volumes.

The following examples assume that either you have two disc volumes on-line or that you have
created a memory volume of sufficient size. For these examples, a memory volume of 100 blocks is
sufficient.

310 The Librarian

Creating Libraries of Object Modules

To create libraries, you can combine either modules provided by HP or your own modules, or any
combination of the two. Let’s first look at adding modules to the System Library file.

Adding Modules to the System Library

A common way to use library modules is to add them to the current System Library file. Let’s
assume that it is the file named LIBRARY for present purposes, although you can change it to any
file by using the What command at the Main Command Level. The procedure used to add modules
to LIBRARY is very similar to that of storing modules in a user library, which is the next example.

Here is a brief summary of the steps required: first, make a new library file, and copy into it all of the
modules currently in LIBRARY; next, add ModuleThree and ModuleTwo to the new file (in this
case the order of modules is arbitrary, since the loader will load them in the right order); then
replace the LIBRARY file with this new library; execute the program, and the modules are loaded
automatically for you. The actual procedure is given below.

1. Invoke the Librarian. This is done by pressing from the Main Command Level. (If the
Librarian is not on-line, insert the ACCESS: disc and try again. Remove the ACCESS: disc
once the Librarian has loaded.) Now use the Librarian to create the new library.

2. Putthe SYSVOL.: disc (or the one containing the LIBRARY file) in the #3 drive. Press (1)
and then type #3:LIBRARY . and press (Retum) or (ENTER) to enter the Input file. You must
include a trailing period to prevent the Librarian from appending the . CODE suffix.

When the Librarian finds the Input file, the display will show the name of the first module in
the file. (You should see the module named RND if you have not yet modified the LIBRARY
file.) If you have a printer, you can press (_F) to list all of the modules in the Input library.

3. (For this example, we will assume that you are using unit #4 as the second volume;
however, if the LIBRARY file is small enough, you can also put the new library file on drive
#3. We will also assume that the destination volume has enough room for the new library
file.)

Press (0) and enter #4: NEWLIB. as the Output file. Again, a trailing period prevents the
+ CODE suffix from being appended to the file name. If you are using a memory volume, use
the unit number of the memory volume.

(If you are using a disc, this disc must not be removed until you have finished creating the
new NEWLIB file.)

4. Press (_E) to enter the Edit mode. You should now see this prompt (in the middle of the
screen):

F First modules: RND
U Until module: (end of file)

5. You can now transfer all modules in the Input file to the Output file, including the last
module, by pressing (for Copy).

6. When the preceding transfer is complete, press (_A_) to append a module to the NEWLIB
Output file. The Librarian prompts with Inrut file:. Put the DOC: disc, or whichever
disc now contains ModuleThree, in Unit #3 (not #4, which must not be removed). Enter
#3:MOD_3 as the Input file.

The Librarian

7. The Librarian now prompts with Enter list of modules or = for all. Enter =
for all. After ModuleThree has been transferred to the NEWLIB library, the Librarian
prompts with Aprend dones <space> to continue. Press the spacebar to clear the
prompt.

Now use steps 6 and 7 again to copy ModuleTwo (in file MOD_2.CODE) into the NEWLIB
file.

8. Now that all modules have been added to the NEWLIB file, press (_§) to stop editing and
(K) to keep the file.

9. You should now verify that the modules were indeed copied to the Output file. Press (1)
and enter #4 : NEWL IB . as the Input file. Press the spacebar repeatedly to scan through the
modules in the new library file. If you have a printer, press (_F_) to get a File Directory
listing.

10. If all modules are present, then press (@) to Quit the Librarian.

11. Now you have one of two options to make this library the System Library: you can use the
What command at the Main Level to specify the file named NEWLIB (on the destination
volume) to be the System Library; or you can replace the LIBRARY file on the SYSVOL.:
disc with this file. If you choose the second option, it is probably better to keep the current
copy of LIBRARY on the disc; you should first Change its name to something like OLDLIB
and then Filecopy the NEWLIB file onto the SYSVOL.: disc, changing its name to LIBRARY.

12. Make sure that the System Library file is on-line, and then eXecute or Run the program.

As the program is loaded, the imported modules will also be loaded automatically. Here are the
results of running the program.

EREFXRRXXREXREE ProdramOne *EXRXEEXXREX XXX
I came from ModuleTwo and broudht this:

I came from ModuleThree

FRFRRFFFREEERE* ProgramOne FEXEEEREENNNEENR

After the program has completed execution, the memory used by both program and modules can
be used for other purposes.

As you can see, the System Library is a special library of object modules that is automatically
accessed by the linking loader at program execution time (and by the Compiler at compile time).
Because of this automatic access, you do not need to use the Permanent-load command to access
this library’s contents. This library would normally store those modules often used in your prog-
rams. Further descriptions of using HP-supplied libraries are given in the Pascal 3.0 Procedure
Library and Pascal 3.0 Graphics Techniques manuals.

311

312 The Librarian

Making Your Own Library

Since we created a library that contains the modules named ModuleTwo and ModuleThree in the
preceding example, you already know what is required to make your own library. The only
difference is that you will not be adding the current LIBRARY modules to your library.

Here is a brief summary of the steps you will take in this example: first, create a new library with the
Librarian and add the example modules ModuleTwo and ModuleThree to it (as with the last
example, the order of modules is arbitrary; since they are in one file, the loader will take care of
loading them in the proper order); P-load this library; and execute or run the program. A more
detailed procedure follows.

w

10.

11.

12.

Note

During the transfer process, you must not move the destination disc (the
one that contains the Qutput file).

From the Main Command Level, press to enter the Librarian. Your screen should
now display the Main Prompt for the Librarian.

Put the destination disc in drive #4. Then press (_0), and type #4: USERLIB and press
or (ENTER) to enter the Output file specification.

Place the DOC: Disc into the #3: disc drive. Then press (1) and enter #3:MOD_3 as the
Input file specification. You will see MOD_3.CODE displayed as the Input file. The first object
module found in the object file, MODULETHREE, is also displayed. The computer is in
Copying mode as shown by the word COPYING on the prompt.

Transfer the object module MODULETHREE using the T command. Since MOD-
ULETHREE is the only module in that file, the A command would have done the same job.

Repeat steps 4 and 5 to name MOD_2 as the Input file and Transfer the object module
MODULETWO into your new library.

If you had other modules to transfer, you would repeat steps 4 and 5 as needed.
Press (_K_) to Keep the new file on the destination volume.
Press (_Q) to Quit the Librarian and return to the Main Command Level.

If you P-loaded these modules as you worked through the preceding example, then you
need to re-boot in order to fully test your new library (to ensure that the modules P-loaded in
the preceding example aren’t accessed instead).

Press (_P) for the Permanent-load command. You will be prompted:
Load what code file 7 Enter #4:USERLIB (you don't need a period if you didn’t
include one when you specified this file as the Output file).

Now press (_X) to eXecute ProgramOne. Answer the Execute what file? prompt
by entering #3: PROG.1 as the file specification.

The results of the executed program are shown below.

HHEEEEEERAXXNA®E ProgramDne HEXRXXHEEEEFNNER
I came from ModuleTwo and brought this:

I came from ModuleThree
HRERXRRXEXXEX%XX% ProgramDrne #%%%%%%%%%E%%%%

The Librarian

As mentioned earlier, you could also have separately P-loaded ModuleThree and ModuleTwo, in
that order, and then run the program. Or, as with the preceding example, you could also have
added these modules to the System Library. You could also have used What at the Main Com-
mand Level to specify this library as the System Library. The method you use depends on factors
such as these: whether you are developing and testing the modules; whether you are also using

other modules in the System Library; who will be using the modules; and so forth.

Linking Object Files Together

The Librarian permanently links modules together by combining their module directories into a
single directory. To see this process in action, you will be linking the two example modules and the
example program together.

1. Put the ACCESS: disc in a drive and press to run the Librarian.
2. Put the DOC: disc in the #3 drive. Press (_0), and then type #3: TEST_1 and press

(Return) or (ENTER) to enter the Output file specification. #3:TEST_1.CODE will be our linked
library’s name; #3: TEST 1. CODE is now displayed as the Output file. When an Output file is
named, the menu replaces the B and H command prompts with the “L Link” prompt. The

Librarian also enters the COPYING mode.

3. Enter the LINKING mode by pressing (_L). This is the first step in the two-step linking

process. Your screen now displays a new command prompt, as shown below.

>

—

copvright notice:

Input file: (rone)

command?

fﬁ Librarian [Rev, 3.0 15-Arr-841 1-Jun-84 8:05:08 A
Q Quit
P Printout OFF PRINTER:LINK.ASC
0 Output file: TEST_1.,CODE
C CopPv LINKING
N Name of new module: {none)
R Relocation base: 0
G Glokal base: 8]
S Space for rPatches:
D output Def table? YES
\

313

314 The Librarian

4. Press(_N_) and enter NEWNAME as the new module name. If you did not do this, the object
module contained in the new object file, TEST_1.CODE, would be the module name of the
first module transferred. To avoid confusion, use “NEWNAME”.

5. Press (| _Jand enter #3:PROG_1 as the Input file. (The *“.CODE” suffix is automatically
appended to the Input file’s name.) PROG_1.CODE is now the Input file.

6. Press (_A) to transfer all object modules contained in PROG_1.CODE into TEST_
1.CODE. Since PROG_1.CODE contains only one module, would have done the
same job.

7. Repeat steps 5 and 6 to transfer MOD_2.CODE and MOD_3.CODE. When all files are
transferred, final linking must be done.

8. Press to complete the linking process. This is the second step in the linking process.
Remember that all object modules must be on-line when you complete the linking process.

9. Press (_K_) to Keep the new file, and press (_Q) to Quit the Librarian and return to the
Main Command Level.

To see that everything works, execute your new program. From the Main Command Prompt press
("X), and then enter TEST_1 as the file specification. The *.CODE” is automatically added to
the file name. Your screen should now display the the following:

ERRERERXXRX%%%% ProgramOre HEEREXEREEEEERH
I came from Module_2 and broudht

I camd from Module_3

AXFRXFARKFAX%%% ProdramOrie FXXEXEEXXEXEERR

The benefit gained over merely combining modules into one library is that linking modules together
reduces the amount of space required to store the library.

Subtle Points about Linking
There are several subtle side effects that occur when modules are linked that should be discussed
here.

® When you link object modules, the interface text is removed. Thus, linked modules cannot be
searched by the Compiler when it is attempting to satisfy IMPORT statements; however, these
modules can be used by other modules at load time by P-loading them or placing them in the
System Library. (Remember that you can also keep a copy of the unlinked object module
which can, of course, be imported by other modules at compile time.)

® The linking process always produces relocatable object code. This code has been relocated to
the values specified by Global base and Relocatable base, but it will be relocated again when it
is loaded for execution. For this reason, you don’t need to specify Global base and Relocatable
base — just leave them zero.

The Librarian 315

e If two or more programs are linked together into one object file, the resultant file contains code
with only one start address (rather than the two that you began with). Contrast this to the
situation in which you put two programs in an object file; when this file is executed, the two
programs get executed separately in the order encountered in the file. This is the reason that
you cannot link the INITLIB modules together; it is actually a set of programs and modules in a
library file.

e After linking, most programs will still have unsatisfied external references (such as calls to the
File System read and write routines). These unsatisfied references do not cause error mes-
sages; they are satisfied by the linking loader as the program is prepared for execution. These
system routines are not part of the compiled or linked program; rather, the entire operating
system looks to the linking loader like a group of P-loaded user libraries.

Summary of Linking Object Files

Note

All input modules must remain on-line for the duration of steps 6
through 9. The output file must be on-line for steps 3 thru 10.

Enter the Librarian.

Be sure the disc containing the file to be linked is in the appropiate disc drive.
Specify an Output file name.

Press to begin the linking process

Name the new module with the Name Command.

Specify the Input file containing the modules you want to link.

N oo L

Transfer only those files you want into the new Output file using the All and Transfer
commands.

®

Repeat steps 6 and 7 until all files are transferred.
Press to complete the Linking process.
10. Press (K) to keep your output file.

11. Press (_Q) to quit the Librarian

\©

316 The Librarian

Getting Detailed Object File Information

Let’s unassemble the file MOD_2.CODE to see how the Librarian provides detailed information
about a code file. It is best to have a printer on-line while unassembling; however, if you don’t, you
can declare a Printout file as described in the following procedure.

1. The Librarian is on the ACCESS: disc shipped with your system. To access the Librarian,
you will need to put this disc on-line, or copy the file to a disc that is on-line, or P-load the file.
After the file is on-line, press (at the Main Command Level) to load the Librarian
subsystem into the computer.

2. If you don’t have a printer on-line, then you must specify a file to which the unassembled
information is sent. Press (_P_) (for Printout) and enter a file specification; if no suffix or
trailing period is included, then “. TEXT" is appended to the file name. The screen will be
updated to show that the printout device is ON and that it is the file you specified.

3. Press (I)and enter #3:MOD_Z as the Input file. No Output file is needed.
4. Press (U) to get into the Unassemble mode.

Your screen should now show the Librarian Unassemble menu.

r)
Librarian [Rev, 3.0 15-Arr-841 1-Jun-84 9:45:02
Q0 Quit
S Stop unassembling
T Print import Text
E pPrint Ext table
D Print Def table
A unassemble all (Assembler conventions)

C unassemble all (Compiler <conventions)
P PC rande (Assembler conventions)
L Line range (Compiler conuventions)

unassemble option?

- y

When the first command key is pressed, an information header is printed along with the desired
information. This header is printed only this one time. An internal counter keeps track of the line
count and prints a page heading at the top of every new page. If you change the placement of the
printer paper, you may waste some paper when the counter sends a form-feed to the printer. When
you quit, a final form-feed is sent to the printer automatically.

The Librarian

The Text and Table Commands

Use these commands to obtain Interface Text and REF and DEF tables of modules.

The Print Import (or Interface) Text Command

Pressing prints the interface text (DEFINE SOURCE) of the module, if any. In a compiled
module, the DEFINE SOURCE portion consists of the text in the MODULE, IMPORT (if present),
and EXPORT declarations; in an assembled module, this text consists of the lines containing the
SRC pseudo op. (Note that any comments and indentation have been removed.)

Librarian [Rev, 3,0 15-Apr-841 23-APr-84 7: 6:51 rpage 1
MODULE MODULETWO Created 23-Arr-84

NOTICE: (rione)
Produced by Pascal Compiler of Z3-Apr-84

Revision number 3

Directory size 174 hbvtes

Module size 3072 bvtes

Module NOT executable

Code base 0 Size 104 bvtes
Glokal hase 8] Size O brtes
EXT block) Size 72 bytes

DEF klock 3 Size 90 bvtes

EXPORT block 1 Size 74 brtes

There are 1 TEXT records

DEFINE SOURCE of ‘MODULETWO’:

MODULE MODULETWOS
IMPORT ModuleThrees

EXPORT
PROCEDURE TwolLines}i

END3

The Print EXT Table Command
Pressing (_E) prints the table of External symbols the module references. Detailed information on
the EXT table may be found later in this chapter.

EXT table of ‘MODULETWO':

FS_FWRITELN
FE_FWRITEPAOC
MODULETHREE_THIRDLINE
SYSGLOBALS

The Print DEF Table Command
Pressing (_ D) prints the table of symbols the module itself defines. Detailed information on the
DEF table may be found later in this chapter.

DEF table of ‘MODULETWO':

MODULETWO Ghbase
MODULETWO_MODULETHWO Rbase+102
MODULETWO_TWOLINES Rbhase+?2

MODULETWO__BASE Rbase

317

318 The Librarian

The Unassemble Commands

There are two conventions used when unassembling object files: Compiler and Assembler. The
reason for this is that the Compiler and Assembler use different conventions for the object code that
they generate.

The Compiler generates code so that each procedure begins with a TRAP #1 ora LINK #n ,AB
and ends with a JMP or RTS. The Librarian uses this information to assume that everything from
the beginning of the file to the first TRAP #1 or L INK is a constant. From the end of the procedure
to the next TRAP #1 or L INK is also unassembled as constants. Everything else is unassembled as
instructions. The Assembler convention assumes that everything is an instruction.

Note

All Unassemble commands require a printer unless a destination file is
specified with the P command.

The Unassemble All (Compiler convention) Command

Pressing (_C) directs the Librarian to unassemble the specified object module using the Compiler
convention described above. You can use this command on files that were created by either the
Assembler or Compiler. Here are the results of using this command with the MOD_2.CODE
compiled object file.

Librarian ([Revs, 3.0 15-ApPr-841 23-ArPr-84 9:58:42 pade 1
MODULE MODULETWO Created 23-Apr-84
NOTICE: {(none)

Produced b» Pascal Compiler of 23-APr-84
Revision number 3

Directory size 174 byrtes

Module size 3072 brtes

Module NOT executable

Code base o] Size 104 brtes
Global base o] Size O bvtes
EXT block 5 Size 72 bytes

DEF block 3 Size 90 brtes

EXPORT block 1 Size 74 hvtes

There are 1 TEXT records

TEXT RECORD #
TEXT start block

REF

LOAD address

0

sUNLo R vy I S8

FYRY e e
S 01

Do

WWwww
oo e o

a4
a8
50
52

58
GO
B2
64
66
68
70
2
74
76
78
80
84
86
88
a0
92
g4
96
98
100
102

0000
4E41
2F2D
2F17
487A
3F3C
3F3C
4EBS
0000
4AAD
6702
4E43
4EBS
0000
4AAD
6702
443
4EB9
Q000
4ESE
4ET7S
4920
6361
GDBS
2066
726F
6D20
4DBF
G475
GCEBS
5477
GF20
G1B6E
G420
6272
BF75
6768
7420
7468
6873
3A00
4E7S

start blockK

Q000
FFAG

0030
0027
FFFF
0000

FFEA

0000

FFEA

Q000

The Librarian

of ‘MODULETWO':

Size 104 brtes
Size 24 brtes
dcsw O or docob 040 or dc+b ’ ’

- = = = = = - = « - - - MODULETWO_TWOLINES
trap #1,8#0

move.,l SYSGLOBALS-90(aS):-(sp)

moves,l (sP)s-(sP)

rpea Rhase+B2

move.,w #39,-(spP)

move.,w #-1,-(spP)

Jst FS_FWRITEPAOC

tst.l SYSGLOBALS-22(al)
beqa.s Rbase+38

trap #3

Jsr FS_FWRITELN

tst.l SYSGLOBALS-22(al)
keass Rbhase+52
trap #3

Jsr MODULETHREE_THIRDLINE

unlk aGB

rts

dc.w 18720 or de.b 73:32 or de.b ‘1
dc.w 25441 or dc.b 59,97 or de+sbh ‘ca’
dc.w 28005 or dc.b 109,101 or dc+b “me’
dc.w BZ294 or dc.b 32,102 or de.b 7 f7
de.w 29295 or de.b 114,111 or de.b ‘ro’
dec.w 27936 or de.b 109,32 or dc+b ‘m
dc.w 18823 or de.b 772111 or dc+b "Moo’
de.w 25717 or desb 100,117 or dc+b ‘du’
de.w 27749 or dec.b 108,101 or de.b ‘le’
dc.w 21623 or de.b 84,119 or de.b ‘Tw’
dc.w 28448 or dc.b 111,32 or deeb ‘0
de.w 24842 or dec.b 97,110 or de+.b “an’
dc.w 25632 or dcsb 100,32 or de+b ‘d
de.w 25202 or de.b 98,114 or de.b ‘br’
dc.w 28533 or desb 111,117 or dc+.b ‘ou’
de.w 26472 or de.b 103,104 or de+b ‘9gh’
dec.w 29728 or de.b 116,32 or dc.+.b ‘'t
dc.w 28800 or dec.b 116,104 or doceb “th’
do.w 26995 or desb 105,115 or dc+b ‘isg’
dc.w 14848 or dcsb 58,0 or dc+sb '3 /
dc.w 20085 or desb 78,117 or dc+b ‘Nu’

319

320 The Librarian

The Unassemble All (Assembler Convention) Command

Pressing (_A_) will cause your computer to unassemble the specified object module using the
Assembler convention described above. You can use this command on files that were created by
either the Assembler or Compiler.

Note

Use of the Assembler convention may produce unpredictable results,
because under this convention there is no way to tell code from data.
Files produced by the Compiler and unassembled under the Compiler
convention will almost always produce reasonable results.

Here is the unassembly of the MOD_2.CODE object file using the Assembler convention. Notice
that, with Assembler convention, the first two bytes ($0000) are assumed to be code; with Compiler
convention they are assumed to be data (remember that the Compiler convention assumes that
anything until the first TRAP #1 or LINK #n,AB is assumed to be data). Notice also that the
module heading shows that this object module was produced by the Compiler.

Librarian [Rev, 3,0 13-Apr-841 23-Apr-84 10: 1:34 prpade 1
MODULE MODULETWO Created 23-Aprr-84

NOTICE: {(none)
Produced bv Pascal Compiler of Z3-Apr-84

Revision number 3
Directory size 174 bvtes
Module size 3072 byies
Module NOT executable
Code base O Size 104 brtes
Globkal base 0 Size O bvtes
EXT block 5 Size 72 bvtes
DEF block 3 Siz 90 bvtes
XKPORT block 1 Size 74 bvtes
There are 1 TEXT records
TEXT RECORD # 1 of ‘MODULETWO’:
TEXT start block 2 Size 104 brtes
REF start blocK 4 Size 24 brtes
LOAD address Rbase
8] 0000 4E41 ori.b #B5,40
4 0000 ZFZD ori+b #45,40
8 FFAB dcow ~-80 or de,b 255,166 or dc.b !
10 2F17 move.l (sp)+-(s5P)
12 487A 0030 rea Rhbhase+G2
16 3F3C 0027 move.w #33,-(sp)
20 3F3C FFFF mouve.Ww #-14-(s5P)

24 4EB9 0000 Jsr FS_FWRITEPADC
0000

30
34
3B
38

a4
48
50
32

58
GO
62
G4
G6
68
70
72
74
78
80
84
86
88
a0
92
94
96
98
100
102

4AAD
G702
4E43
4EBS
0000
AAAD
6702
4E43
4EB9
Q000
4ESE
AET7S
4820
B361
BDES
2066
726F
BD2O
4DBF
BCBS
3477
G1BE
G420
6272
GF75
6768
7420
7468
6873
3A00
4ET7S

FFEA

0000

FFEA

QD00

6475

BF20

tst.1 SYSGLOBALS-Z2Z(al)
bhea,s Rbase+38

trap #3

Jsr FS_FWRITELN

tst«l SYSGLOBALS-Z22(al)
beqa,s Rbase+52

trap #3

Jsr MODULETHREE_THIRDLINE

unlk aG
rts
lea -(a0) sad

bls+.s Rbase+1G3
bklt+s Rbhase+169
movea.,l -(aB) :a0
movea #111,d1
blt.s Rbase+106
lea 25717(sp) saBG
bkde+s Rbase+181
adda,w #2,32(sp+dB.1)
bsr+s Rbase+196
becss Rbase+120
bhi.s Rbase+204
ble.s Rbase+2089
bhea.s Rbase+198
movesa #3Z2,d2
moveaq #104,42
bus.s Rbase+215
move.w d0,d5

rts

The Line Range (Compiler Convention) Command
Pressing (L) causes two prompts to be displayed. The computer needs to know the line number
range to unassemble. The code will then be unassembled up to, but not including, the upper range
value. The object module must have been compiled using the $DEBUG ON$ Compiler option to
be unassembled with this command.

The PC Range (Assembler Convention) Command
Pressing (_P_) causes two prompts to be displayed. The computer needs the location counter
values of the segment of code you want unassembled (relative to the relocation base of the
module). The code will then be unassembled up to but not including the upper location counter

value.

The Librarian 321

322 The Librarian

Creating a New Boot File

At power-up, the Boot ROM searches mass storage for system Boot files: Boot ROMs 3.0 and later
versions search all mass storage devices on-line and let you choose which Boot file you want; earlier
Boot ROMs choose the first Boot file found on the right-hand internal disc drive. A Boot file is then
loaded by the Boot ROM. The Boot file in turn may load other parts of a system. (For further details
of how this system boots, see the discussion called The Booting Process in the Special Configura-
tions chapter.)

The command is used to create Boot files. This is an advanced option and should only be
used if you have a clear understanding of system generation.

The following is an overview of the system generation process using the command.

o

10.

Note
The B command cannot create boot files in WS1.0 directories.

Use the Editor to produce the programs and modules that will make up the new boot
program. Both Assembler language and Pascal modules may be used.

Assemble the Assembler language modules and compile the Pascal modules.

Use the Librarian to Link the code files together as desired. Be sure to specify the global and
relocation bases. In addition, this file must have no unsatisfied external references. Note that
the first program linked will provide the start address for the Linked file. This start address will
also become the start execution address of the system Boot file at boot time.

Keep the linked file.
Specify the linked file as the Librarian Input file.

Now press to properly place the module name in the destination’s directory and
format the code for use by the boot ROM. The B command moves the cursor up to the
Output file prompt.

Specify the Output file as SYSTEM_xxx (the xxx can be any characters syntactically allowed
for file names. With Boot ROMs 3.0 and later, the name can be SYSxxxxxxx; see Re-
Naming BOOT: Files in the Special Configurations chapter for examples). Be sure to append
a trailing period to the file name to keep a suffix from automatically being appended to the
name.

Transfer the Input file into the boot file. This copies the code file.
Press again to finish the Boot operation.
You can now either Quit the Librarian or power up and test your new system.

The Librarian 323

Librarian Command Reference

The Librarian command set consists of single-letter commands allowed when the letter prompts are
displayed on the screen. You press the corresponding key to cause the command to be executed.

CA) In Copying and Linking modes, this command transfers All modules from the Input file to
the Output file.

In Edit mode, this command is used to Append modules to the Output file.

In Unassemble mode, this command directs the Librarian to unassemble the Input file
using Assembler conventions.

The Boot command is used to create code files that are loadable by the Boot ROM. The
Boot command is given instead of the Output file command. The Input modules are then
combined in a format that is bootable. This command should only be used by system
designers. A boot file must be a self-contained processor environment. It must be stored
on a LIF or SRM volume and be named SYSTEM_xxx, where xxx represents any
combination of characters. If you have Boot ROM 3.0 or later version, the file can be
named SYSxxxxxxx or stored on an SRM system under the /SYSTEMS directory.

(¢) IntheLink mode, this command returns you to Copy mode. While in Copy mode, you
can combine modules into a library without Linking. This mode can be used to add
modules to (or remove them from) the System Library, your own library, or INITLIB (the
Initialization Library file which is executed during the boot process).

In Edit mode, this command Copies the First module up to (but not including) the Until
module to the Output file.

In Unassemble mode, this command unassembles the Input file according to Compiler
conventions.

(0) InLink mode, this command controls whether or not the DEF table is included in the
Output file. If the Output file is to be Linked to another file later, the DEF table must be
left in the Output file. If the Output file is not to be Linked, you can save memory space
by removing the DEF table. A YES includes the DEF table, a NO removes it. Pressing

toggles between these two choices.

In Unassemble mode, this command prints the DEF table.

g

This command is available when you have specified both Input and Output files. It puts
vou into Edit mode, which allows you to combine modules in the Input file with Append
modules and place them into the Qutput file (while either Copying or Linking).

In Unassemble mode, this command prints the Ext table.

(CF) This command prints the File directory of the Input file on the current Printout file
(external printer or file). It doesn’t matter whether the Printout prompt is ON or OFF;
the printout will be sent to the Printout file.

In Edit mode, this command is used to specify the First module to be transferred to the
Output file. (The First module must precede the Until module in the Input file.)

(C6) In Linking mode, designate the Global base address (most useful when preparing a file
for use as a system Boot file).

324 The Librarian

CH)

The Header command allows you to change the size of the library header. From 1
through 18 module entries require only one header block, so a header size of 18 is the
minimum. If you specify less (but not 0), you will still be given 18. From 19 through 38
module entries requires two header blocks. This is the default header size. The specifica-
tion is made in units of module entries — not blocks. The Librarian calculates how many
blocks are necessary to maintain the number of modules you specify and then gives you
the maximum number of entries that will fit in that number of blocks.

Name the Input file containing the modules you want to transfer to the Output file.
“ CODE” is automatically appended to the file name unless suppressed by a trailing
period (or by the presence of another standard suffix). This prompt can be used many
times to collect modules from several object files into your new object file.

Keep the Output file. Close and lock it into the directory, purging any old file of the same
name.

Enter Linking mode or finish Linking.

In Unassemble mode, you can use this command to unassemble a section of code
defined by two Line values using the Compiler convention. The code must have been
compiled using the $DEBUG ON$ Compiler option.

Enter the specific Module name you want to transfer. (The first module in the Input file is
automatically displayed when an Input file is specified.)

In Linking mode, name the New object module to be created by the Librarian. If you do
not specify specify a new module name, the name of the first module transferred will be
used.

Name your Output file. “.CODE” is appended automatically unless suppressed by a
trailing period (or standard suffix) in the file name. This Output file must remain on-line
throughout the process of transferring modules to it.

This command is used to turn the Printout option ON or OFF (the default is OFF) and to
select a Printout file. Pressing (_P_) and (Return) or (ENTER) turns the option ON. With the
option ON, the device to which the information is sent is shown on the screen. The
default Printout file specification is ‘“‘PRINTER:LINK.ASC’’ unless you specify another.
“ TEXT” is automatically appended to the file name unless it is suppressed by a trailing
period (or standard suffix) in the file name.

Before any information is sent to the Printout file, the Librarian first sends heading
information to the device. When Linking, you will get a map of all Linking done by the
Librarian. This option does not affect any information sent to the Printout file by the
Unassemble commands.

In Unassemble mode, this command allows you to unassemble (using Assembler con-
ventions) a section of code defined by two location counter range values.

ek

The Librarian

Quit the Librarian and return to the Main Command Level.
In Linking mode, designate the Relocation base address to be used.

In Linking mode, this command assigns Space for patches. To save execution time and
memory space, the Compiler can be made to use PC-Relative addressing instead of
Long-Absolute addressing. This is done with the Compiler option $CALLABS OFFS$.
The PC-Relative addressing mode has an address range of — 32 768 through 32 767
bytes; if the referenced procedure is out of this range, an error will occur at load or link
time. This error prints an error message naming the module having the link out of range.
To fix this, relink the modules adding patch space between them as needed. The number
of bytes needed depends on the particular module. As a rule of thumb, begin with a
patch of 100 bytes.

In Edit or Unassemble modes, this command Stops the Edit or Unassemble session and
returns to the Librarian’s main prompt. (This will not stop an ongoing Unassemble;

however, the key will.)

In Copying and Linking modes, this command Transfers the object module currently
named in the Transfer prompt to the Output file.

In Unassemble mode, this command prints the interface Text (DEFINE SOURCE) of the
current Input module.

Enter the Unassemble mode.

In Edit mode, this command allows you to specify the Until module. If you enter a null
response (by pressing or with no file specification), then
(end of file) is displayed; a subsequent Copy will copy all remaining modules in
the Input file (i.e., up to the end of the file) to the Output file.

This command gets you into the Verify mode. This mode displays the name of each
module in the Input file and allows you to Transfer it to the Output file (press (_T_)), to
Unassemble it, or to not transfer or unassemble it (press the space bar) and step to the
next module name. After all module names have been displayed, you automatically
leave this mode. To re-verify the file’s contents, press again.

In Linking mode, this command allows you to enter a copyright notice as part of the
Output file. The notice is part of the heading information sent to the Printout file. The
notice can be up to 255 characters long.

325

326 The Librarian

Glossary of Object Code Terminology

Here are detailed definitions of the terms used in this manual regarding object-code library files.

DEF table (Definition Symbol Table)

There is only one DEF table per module. It contains one DEF record for each symbol which is
exported from the module. The DEF table begins on a block boundary which is specified in the
directory for the module. Its length is also given in the directory. The DEF table is contiguous over
its length, which means that individual DEF records within the table may cross block boundaries.

Each DEF record has two parts. The first part is a packed string containing the name of the symbol
which is defined. The string begins and ends on a word (even-byte) boundary. If the string length is
odd, then an extra byte is added to the end for padding so that the next part of the DEF record will
begin on a word boundary.

The second part of a DEF record is a general value or address record (GVR) which defines the
value of the symbol which is being exported. GVR is defined later in this section.

The value extension is 4 bytes or 8 bytes long, according to the data size field. The value of the
symbol is defined to be the value extension plus what ever references are specified by the primary
type and any Reference Pointers that may exist. The value extension must be present.

DEF record
low
LEN=6 S
Y M
First part
B 0 P
L padding
flags len=8
value (high part) Second part
value (low part) (len is Second part length)
high ref pointers (... (GVR includes any number of reference pointers)
DEFINE SOURCE

This is the section of an object module that is searched by the Compiler when the module is
imported (also called “‘interface text”). With Pascal modules, the DEFINE SOURCE consists of the
declarations made by the reserved words MODULE, IMPORT (if present), and EXPORT. With
Assembler modules, it consists of the lines defined by the SRC pseudo op, which are intended to
serve the same function as in Pascal modules (however, it may be any arbitrary text).

There may be one table of DEFINE SOURCE per module. It begins on a block boundary, which is
given in the module directory. The length is also given in the directory.

The Librarian

EXT Table (External Symbol Table)

The EXT table contains records (Pascal strings), each of which is the name of a symbol referenced
in this module, but not defined in it (i.e., these symbols are declared in another module which this
one imports and to which this module is linked at load time).

There may be one EXT table per module. The EXT table begins on a block boundary which is
specified in the directory for the module. Its length is also given in the directory. The EXT table is
contiguous over its length, which means that individual EXT records within the table may cross
block boundaries.

Each EXT record is a multiple of four bytes long. The first byte of each string is its length (according
to the Pascal string type); thus strings may be from 1 to 255 bytes long. If strlen(string) + 1 is not a
multiple of 4, then 1 to 3 bytes are added as padding to make the EXT record extend to the proper
boundary.

The first eight bytes of the EXT table are reserved. Thus, the first string in the table starts at an offset
of 8 from the start of the table.

The EXT table is restricted to 65 532 bytes in length (plus the length of the last string). This is so that
any entry in the table can be uniquely referenced by 14 bits; the reference is relative to the start of
the table. See the description of the reference pointer.

EXT Record
low left byte right byte This one is 8 bytes long.
LEN=6 S
Y M The formula is:
B 0 EXTsize=len+4 —(len mod 4)

327

328 The Librarian

EXPORT

EXPORT is a reserved word used in the Pascal Module. It is used to declare those procedures,
functions, constants, types, and variables that are exported, or made available, to other modules
that import the module.

Flags
Flags are used in the DEF table, in REF tables, and in the GVR. Their form is shown below.
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Primary Type Data Size Patchable |Value-Extend| Long Offset
primary type: 00 absolute :no REFERENCE POINTERS follow
01 relocatable :no REFERENCE POINTERS follow
10 global :no REFERENCE POINTERS follow
11 general :one or more POINTERS follow
data size: 000 signed byte (8 bits) -128..127
001 signed word (16 bits) —32768..32767
010 signed long (32 bits) —2147483648..2147483647
011 (reserved)
100 unsigned byte (8 bits) 0..255
101 unsigned word (16 bits) 0..65535
110 (reserved)
111 (reserved)
patchable: Indicates that the linker may patch a location in a TEXT record. Applicable only

value extend:

long offset:

in a REF record and must be false everywhere else.

0 No extension present, assume O
1 Value extension present. Length is 4 bytes.
Always true in DEF records.

0 Use short form (1 byte) of offset field. Value is in the range 0..255 and specifies
the total length of the GVR except in REF records.

1 Use long form (3 bytes) and offset field. Value is a 24 bit unsigned number
in the range 0..16777215. Applicable only in some REF records.

Note

Data Size should be signed long everywhere except in a REF record.

The Librarian

General Value or Address Record (GVR)

The GVR is a variable length record which is intended to represent any absolute, relocatable, or
linkable value.

TYPE DATATYPE = (shvtes» swords sints, fltPpt, ubvtes,uword)]?

RELOCTYPE = (absolutes relocatables» dglobal,s, deneral)s
GENERALVALUE = PACKED RECORD
PRIMARYTYPE : RELOCTYPES (#allows auicK indication
of most common tyrPes¥*)
DATASIZE : DATATYPE: (#specifies 192 or 4 bvtes, sidned or not#*)
PATCHABLE + (#specifies self relative field in branch#)
VALUEEXTENDED : BOOLEAN] (#indicates valueextenion#)
CASE LONGOFFSET : BOOLEAN OF (*#1 or 3 bvte offset#)
FALSE : (short:0.,,255)% (¥unsigned B bits*)
TRUE : lond:0,.,18777215) 3% (#unsidned 24 bit value#®)
END
VALUEEXTENTION = PACKED (#present if value extended bit above is set¥*)
RECORD

CASE DATATYPE OF
SBYTE sSWORD ySINT »

UBYTE sUWORD : (value inteder)s

END

REFERENCEPTR = PACKED RECORD (%*one or more present if tvrpe = deneral#)
ADDRESS : 0..163B33 (*¥multirly by 4 to det address of EXT svmbol¥)
OP : (ADDITSUBIT)]} (#add or subtract the modifrying value®)
LAST : BOOLEANS; (#indicated end of list#)

END 3

GVR = CONCATENATION (*NOTE* This is pseudo pascal#*)
GENERALVALUE§ (%2 to 4 brtes of header info#%)
VALUEEXTENTIONS (%0 or 4 bvtes of valuex)
ARRAY[Lzero or morel OF

REFERENCEPTR § (#¥list of EXT references¥)
END 3
IMPLEMENT

IMPLEMENT is a reserved word used in the Pascal Module. It is used as a flag to indicate the
beginning of the module body. It is made up of the reserved word plus a declaration statement. The
statement can be either empty or used to declare those constants, variables, procedures and
functions used internally by the module. None of this information is available outside the module
(unless it is also declared in the module’s EXPORT section).

IMPORT

IMPORT is a reserved word used in the Pascal Module. It names the modules whose DEFINE
SOURCE sections must be examined by the Compiler in order to resolve references to constants,
variables, procedures, and functions exported by the modules. The Compiler uses a module’s
name in conjunction with names of constants, procedures, and functions declared in the module to
generate EXT strings for which the loader will search (and link) at run time.

LIBRARIAN

The Librarian is a subsystem designed to manage HP Series 200 Pascal and Assembler object files,
link and unassemble object modules, and create system Boot files. It can merge object files contain-
ing object modules and optionally link the object modules together. It is the file named LIBRARIAN
in your operating system, which can be changed with the Main Level's What command. It is
accessed by pressing from the Main Command Level.

329

330 The Librarian

Library

A library is an object file produced by the Assembler, Compiler, or Librarian. Its purpose is to
contain object module(s).

LIBRARY

LIBRARY is a special library file included with your operating system. During the boot process, this
file (if on-line) generally becomes the System Library; you can also use the What command at the
Main Level to specify any file as the System Library.

Only a few useful object modules are included in the file when you received it. Feel free to examine
them with the Librarian. Other object modules are supplied on the LIB: and FLTLIB: discs and may
be added to the LIBRARY.

Object File

An Object File is the unit of object code managed by the Librarian. It is made up of a Library
directory and one or more object modules. The Assembler generates one object file from each
source file assembled; the Compiler also generates one object file per invocation. The Compiler’s
object file can contain one or more object modules depending upon the source file’s construction. If
the source file contains a number of compilable modules, that number of object modules will be
created in the object file.

Object Module

Each object module is made up of a module directory and a module body. The module body is
made up of the following items:

One EXT table A table of the symbols imported by the module.

One DEF table A table of symbols exported by the module.

One DEFINE SOURCE A software interface between the module and any program which
Area imports it.

One or more A TEXT record consists of the constants and code instructions that
TEXT-Record/REF-Table make up the program. The REF table is a directory of the symbols
pairs used in the TEXT record.

Pascal Module

HP Pascal allows source modules to be compiled separately into object modules. The object
modules are generally not executable, but are used to complete other Pascal programs. Examples
are given earlier in this chapter.

The Librarian

REF Tables

Each REF table follows a TEXT record and is associated with that TEXT record. The REF table
begins on a block boundary, which is specified in the directory for the module. Its length is also
given in the directory. The REF table is contiguous over its length.

Each REF record is associated with one object (byte, word or integer) within the preceeding TEXT
record. There can be at most one REF record for a given object in the TEXT record. The REF
records are ordered within the table according to the TEXT objects they reference.

The offset field specifies which text object is referenced. The first REF record gives an offset from
the beginning of the TEXT record. Subsequent REF records give an offset from the object refer-
enced by the previous REF record.

low Ref record is a GVR.
flags | offset
offset (low part) offset, 1 or 3 bytes, indicates next object in TEXT record.
high Ref pointers Can include any number of Ref Pointers.

Reference Pointer

Bit 15 thru Bit 2 Bit 1 Bit 0

Address of an EXT Record

Relative to Beginning of EXT Table Add or Sub | End Flag

A REFERENCE POINTER is the relative address of an entry in the EXT table.

The add or sub flag indicates whether the value of the external symbol is to be added (0) or
subtracted (1) from the GVR value in order to obtain the actual value. There may be any number of
REFERENCE POINTERS in a GVR, and there may be more that one reference to the same EXT
record. There may not, however, be both an add reference and a subtract reference to the same
symbol, since these would cancel each other.

The end flag indicates whether there are any more REFERENCE POINTERS in the GVR. (0)
indicates more to come, (1) indicates the end.

There are two special cases for the EXT address.

® Address 0 (bit pattern 00000000000000xx) refers to the relocation delta for the current
module (i.e. new load address minus the old load address).

e Address 4 (bit pattern 00000000000001xx) refers to the global delta for the current module
(i.e. new data address minus old data address)

Address 8 (bit pattern 00000000000010xx is the first valid reference to an external symbol.

There are REFERENCE POINTERS in a GVR only if the primary type field specifies general.

331

332 The Librarian

System Library

The System Library is a file that is automatically accessed by the Compiler at compile time and by
the linking loader at execution time. Object modules stored in this object file are automatically
available to any program importing them.

During the booting process, the LIBRARY file usually gets designated as the System Library;
however, you can use the What command at the Main Level to specify any file. See LIBRARY
above.

Text Record

A Text record is a contiguous section of code, beginning on a block boundary, which is given in the
module directory. The length is also given in the directory. The text record can be any arbitrary
data, but is usually the object code produced by the Compiler or Assembler.

Chapter

8

The Debugger

Introduction

The Workstation Pascal System features a programming aid called the Debugger. As you probably
have guessed, the major purpose of the Debugger is to make program debugging as painless as
possible. You may have already seen a reference to this Debugger when you got this this message:

RESTART WITH DEBUGGER?

The question is in response to a user program generating but not trapping an ‘‘exception.” You will
learn how to answer the question in this chapter.

Here are some of the operations you can perform with the Debugger:

® Step through programs on a procedure, statement, or machine-instruction basis.
® Maintain a record of the statements which have already been executed (in order of execution).

e Examine any memory locations and CPU registers, and display the contents in any of the
following formats: binary, octal, decimal, or hexadecimal integer; real number; alphanumeric
character; and Assembler language (MC68000) instruction.

® Set up ‘‘breakpoints” and ‘“‘error traps” in the program, optionally displaying helpful informa-
tion when each is encountered.

® Perform number-base conversions and integer arithmetic calculations.

The main emphasis of this chapter is to describe using the Debugger to debug Pascal programs.
Debugging an Assembler-language program is more direct; that information is obtainable from the
Debugger Reference Section.

Is the Debugger Loaded?

The Debugger is a very powerful subsystem, because it allows any user to access everything in the
computer. It is therefore a potentially dangerous feature in the hands of users who don’t know how
to use it (or who you don’t want to use it). For this reason, and for space considerations, it is not
automatically loaded when you boot the system. Therefore, you will need to load the Debugger
before attempting to use it. (In previous system versions, it was automatically loaded at boot time,
as it was part of the INITLIB file). Loading the Debugger is explained in the following Sample
Session section.

333

334 The Debugger

A Sample Session

This section describes methods for debugging Pascal programs with the aid of the sample program
called DEBUG, supplied to you on the DOC (documentation) disc. The program is given in source-
code and object-code form.

® DOC:DEBUG. TEXT — the source-code file

e DOC:DEBUG.CODE — the object-code file

The Example Program

A listing of the program is included here for reference. Note that a Pascal program must contain the
$DEBUG ON$ Compiler option if you want to have the ability to halt the program at particular line
numbers. The effects of this option are further described in the Compiler chapter.

Pascal [Rev 3.0 4/15/841 DEBUG.TEXT 28-Apr-84 14:21:25 Pade 1

1:D 0 $DEBUG ON% { Enable debudgding, ¥

2:8

3:D O PROGRAM XYZ (OUTPUT)

4:D 1 VAR

S5:D -4 1 i : INTEGER]

G:D -8 1 J : INTEGER

7:D -16 1 X : REALS

8:D -24 1 ¥ : REALS

9:D -25 1 chl : CHAR

10:D -26 1 ch2 : CHAR;

11:8

12:D 1 PROCEDURE Level_13

13:D 2 VAR

14:D -4 2z i : INTEGER:

15:D -8 Z X : INTEGERS

16:D -12 2 ¥ : INTEGERS

17:8

18:D 2 PROCEDURE Level_2bi

19:C 3 BEGIN
20%C 3 WRITE('Level 2b: ‘)i
21%C 3 WRITE(’ i= 4122+’ x="1x:d)3
22%C 3 WRITELNC(hi=’ychizi)i
23%C 3 END 3
24:8
25:D 2 PROCEDURE Level_Zaj
26:D 3 VAR
27:D -12 3 i+ X+ v : INTEGER]:
28:8
29:D 3 PROCEDURE Lewvel_ 33}
30:C 4 BEGIN
31%C 4 IF i < 4 THEN
3z2:C) BEGIN
33*%C 5 WRITE(’Level 3:)3
34*C 3 WRITE(’ iz/311297 x='sx:d)3
35%C 5 WRITELN(’ chl="ychlz1)3
3G6*C 5 iz= 1 + 13
37*C ja Level_ 33
38:C S END 3
39%C 4 IF chl="a’ THEN
40:C S BEGIN
41%C 5 chis= ‘x’3}
42%C 5 WRITE('Level 3: i
43%C 5 WRITE(i='43i:2,s" x='yx:4)]%
44%C 5 WRITELN(’ chl='ychlz1)3
45:C) END3
46+C 4 END 3

The Debugger

48:C 3 BEGIN

49%C 3 WRITE('Level Z2a: ‘)i
SO*C 3 WRITEC(’ i=/3i:24+’ x='3x:d)3
S1%C 3 WRITELN(’ chi='4schlz1)3
S2%C 3 ir= 15 xi3= 23§ vi= 3i
53%C 3 Level 33

S4*C 3 ir= 4% xi1= 3§ vi= Bi
S5#C 3 Level _2b3i

SG*C 3 END 3

57:S

58:C 2 BEGIN

S59*C 2 ii= 0§ x1= 0F vi= 0F
GO*C 2 WRITE(‘Level 1: R
G1*C 2 WRITEC(i='4i:124+" x='yx:d);
GZ*C 2 WRITELNC(’ chl="ychlz1)}
B3*C 2 Level _2b3

G4*C 2 Level_2aj

G5*C 2 END 3

6G6:S

G7:C 1 BEGIN

GB*C 1 ig= 1034

G9*C 1 xr= 20,05 yi= 30,01

70%C 1 chl:= ‘a’§ ch2:= ‘b’3

71%C 1 WRITE('Main: ‘)

72%C 1 WRITEC(Y i=73122+’ x='yx:12:1)}
73%C 1 WRITELN(’ chl="schl:1)}

74%C 1 Level_13

75+C 1 WRITE(‘Main: ‘)3

76%C 1 WRITE(i=/3i22+’ xX='9x:2:1)3
77%C 1 WRITELN(’ chl="schizl1)3

78%C 1 END.

79:8

No errors, No warninds.

Please Participate

You will learn much more about the Debugger if you participate in this sample session. Execute the
code file one time before attempting the sample session to see the program’s output.

Loading the Debugger

As previously mentioned, the Debugger is not automatically loaded as part of the standard system,
so you will need to load it into the computer. You can load the module in either of two ways:

® Execute it using the eXecute command (from the Main Command Level); the program installs
itself.

o Add the DEBUGGER module to INITLIB, and re-boot the system; the program is then
installed automatically.

Loading the Debugger with the eXecute command allows you to use it until you re-boot the system,
at which time you will have to eXecute it again to use it. By adding the module to INITLIB, you give
all users (who subsequently boot with this INITLIB file) access to the Debugger. You will not want
to use this second method unless you want to give all users access to the Debugger.

335

336 The Debugger

Executing the Debugger

First, make sure that the ASM: disc is on-line or that the file is otherwise accessible. Then, from the
Main Command Level, press the (X) key to initiate the eXecute command. The system will
prompt you with this message:

Execute what file?

Respond by entering the specification of the DEBUGGER file; ASM: DEBUGGER .« will work if you
are loading the program from the original disc (remember to type a trailing period to suppress the
. CODE suffix). The system then loads and executes the program, which installs itself in memory.

Adding the Debugger to INITLIB
Use the Librarian (from the Main Command Level) to add this module to the INITLIB file. In
general, the steps can be summarized as follows:

1.
2.

3.
4.
5.

Make a back-up copy of INITLIB.

Edit the INITLIB file with the Librarian, adding the DEBUGGER module (supplied on the
ASM: disc) to the file. The DEBUGGER can be anywhere after the modules named KEYS,
BAT, and CLOCK; however, it must be before the module named LAST. (Editing libraries is
described in the Librarian chapter.)

Store the new library file (using the Keep command).
Remove the INITLIB file on your BOOT: disc, and add your new INITLIB file.
Re-boot the system.

After re-booting the system, the Debugger should be in memory.

A Note about Key Notations

Throughout this chapter, you will be shown which keys invoke certain Debugger functions. Since
you may have one of three different keyboards connected to your computer, each with a different
set of keys, you will need to learn which key to press on your keyboard. Here are examples of keys
used to invoke a few functions on the three different keyboards®.

Desired HP 46020A HP 98203B HP 98203A
Function Key(s) Key(s) Key(s)
Pause
Single Step ((System))
Slow Step ((System)) (CerRL)-((15_) -(sTep) -(step)
Continue ((System))

For instance, invoke the Pause function on a 46020 keyboard by pressing the key. On a
98203B keyboard, press the key. With a 98203A keyboard, press the key.

1 This discussion only gives a few examples; the Debugger Keyboard section near the end of the chapter describes all key(s).

The Debugger

As another example, suppose that you want to invoke the Single-Step function. On both
98203A and B keyboards, press the key; the label is on the key itself. On a 46020
keyboard it will be the System key labeled on the key, which is labeled STEP on the
screen while in the System-key mode. (If you are not already in System-key mode, then you
will need to press the key before pressing (_f5)). The same notation is used for the
other System keys on the 46020 keyboard; the actual System key (i.e., through (78))
is not given in text; the label is instead given. You will need to make the association, which you
can easily do by looking at the System-key labels while the Menu is being displayed (press the
key to toggle the Menu on and off). If you are not familiar with the and

keys, read the discussion in the Pascal 3.0 User’s Guide.

The convention used in this manual is to show the 46020 keys first (followed by the equivalent
98203B key in parentheses). For instance, the ((PAUSE)) key invokes the Pause function:
on the 46020, it is the key; on a 98203B keyboard, it is the(PAUSE) key. (The 98203A
key is not shown, because it is close enough to the label that you should be able
to easily make the connection.)

Is the Debugger Installed?

Before proceeding, you should verify that the Debugger is currently installed. On a 46020
keyboard, press ((PAUSE)) to pause the system. If a r is displayed in the lower, right-hand
corner of the screen, then the Debugger is installed. Press CONT ((CONTINUE)) to resume operation.

If the Debugger is not installed, then pressing will do nothing.

Invoking the Debugger

The Debugger is called from the Main Command Level. When the Debugger is invoked, the system
will then take steps to determine which program you want to debug. Before invoking the Debugger,
let’s look at how it determines which program to debug.

Specifying a Program

When the Debugger is invoked, the system will either look for a code file on its own or ask you for
the code file’s name, according to the following priorities. (If the Debugger is not installed, then the
D command is identical to the eXecute command.)

1. If there is currently an object-code workfile, the file is automatically loaded into computer
memory. If there is a source-code workfile (but not an object-code file), the system reports
that it cannot open the file because it was not found.

2. If there is no workfile, the second check made is for the last file compiled since power-up. If
present, that file is then loaded.

3. If neither such file exists, you are prompted for a file name.

If you plan to debug, edit, and recompile a program several times in a session, using a workfile may
be the best alternative; you will not have to keep typing in the file name, because the current
workfile is the automatic object of those subsystems.

337

338 The Debugger

For this session, we will set up a workfile. First, use the Filer's What command to see if there is
already a workfile. If it happens to be the DEBUG.CODE file, you need do nothing more (before
exiting the Filer). Otherwise, use the Get command to specify the example program as the workfile.
Here is the prompt you will see:

Get what file?

Answer by entering the file specification of the example program. Type:

DEBUG or (ENTER)

The filer responds with something like this:
Source and code file loaded.

You may now Quit the Filer. Now press the (_D) key while at the Main Command Level to
invoke the Debugger.

Answering RESTART WITH DEBUGGER?

As mentioned earlier, this prompt is shown any time that a ‘‘user”” program generates but does not
trap an exception. Answering ‘‘Yes’ to this question will also get you into the Debugger; you will
effectively be at the same point as if you had used the D command. (If the Debugger is not currently
installed or if the program was not compiled with the $SDEBUG ON$ option, answering “‘Yes’ will
only re-execute the program.)

The Debugger Command Screen

You are now in the Debugger’s command screen. This message indicates that the Debugger is
ready for further instructions:

NOW AT START

The 4 shown at the lower, right-hand corner of the screen also indicates that you are currently in
the Debugger.

The Debugger prompt is a . When this screen and prompt are displayed, you can type Debugger
commands on the last line with the prompt and cursor. Enter each command by pressing the
(Return), (ENTER), or (Select) ((EXECUTE)) key. Note that the CONT key resumes normal program execu-
tion. When execution of the program is complete, control returns to the Main Command Line.

The Debugger

Single-Stepping a Program

When the Debugger is at this starting point, it is ready to step through your Pascal program one
statement at a time; this mode is called Single-Step Mode. (It can also do many other things, which
will be discussed momentarily.) In the lower, right-hand corner of the screen, the Debugger also
conveniently displays the program line number which contains the next statement to be executed.
This line number corresponds to the line number given in the Compiler listing of the program.

For instance, when debugging our example program, line number 68 is initially displayed. This is
the line that contains the Pascal statement that will be executed the next time you press the STEP
key. Press the STEP key once and note that the line number changes to 69, which is the line number
of the next statement to be executed.

Pressing STEP a second time results in no change in line number. This response is due to the fact
that the Debugger steps through the program one statement at a time, not one line at a time.
Pressing STEP a third time changes the line number to 70.

Slow Program Execution

The Debugger also allows you to execute a program at a rate of about two statements per second.
Press (_CTRL) -STEP to use this execution mode (Slow-Step Mode). Line numbers are flashed on the
screen as each is encountered. You can return to Single-Step Mode by pressing the STEP key.

Returning to the Debugger Command Screen

You may have noticed that the Debugger prompt disappeared when you began stepping through
the program. Instead, the Debugger displays the screen that will be used for the program’s output
so that you can see what the program is doing at each step of execution.

Note that any keys pressed while in this mode appear in the system’s type-ahead buffer, not in a
Debugger command line. This action allows you to type in responses to any input statements in the
program as you would normally type them in. The program reads this buffer when an input
statement is encountered and executed.

At some point in the program’s execution you may want to to return to the Debugger command
screen to execute a command. To do so, press CRTL-(Break) (CRTL-(PAUSE)). The Debugger restores
the last Debugger command screen, which is the one that you saw before you began single-
stepping the program. You can then execute Debugger commands or return to the program screen
by stepping through the program with the STEP key.

Toggling Between Screens

While in the Debugger command mode, you can also toggle between these displays (without
changing modes) by pressing -ALPHA. For example, suppose you want to quickly check the
program screen to see last line displayed by the program. You can do so (without getting out of the
Debugger command mode) by pressing -ALPHA. When you’ve examined all you want on the

program screen and are ready to return to the Debugger’s command screen, press (CTRL) -ALPHA
again.

339

340 The Debugger

Screen Dumps
While in the Debugger, you can dump the current contents of the alpha or graphics screens. Use

either the DMP A ((_DUMP_ALPHA)) key or DMP G ((DUMP GRAPHICS)) key, or execute a DA or DG command.

Note that this feature is only allowed when running a program in the processor’s ‘“‘user” state’. It is
not possible while executing programs in ‘‘system’ state. If attempted while disallowed, no dump is
performed and the following message is displayed:

NOT ALLOWED NOW

A Look at the Queue

At this point, you may want to continue stepping through the program and noting the order of
execution of lines. You can also get a log of all Pascal program lines executed thus far by the
Debugger by executing the Queue command. (Actually, these are the line numbers of Pascal
statements executed thus far.) Here is an example of the results of this command (assuming that we
have only pressed the STEP key three times in our example):

0

206144 B9
206160" 69
206176° 68
206188 67
START

The line numbers are shown in the right column. (The six-digit numbers in the left column, each
followed by ~, are memory addresses for use when debugging Assembler language programs; you
don’t usually need to be concerned with them while debugging Pascal programs.)

Note that the line numbers in the queue are in reverse order of execution: the first line executed is at
the bottom of the queue listing, the second is listed above the first, and so forth. Also note that the
line at the top of the list has not yet been executed; it will be executed the next time the STEP key is
pressed.

Note that Pascal line numbers will only be shown if the $DEBUG ON$ Compiler option was used.

Note also that when the question RESTART WITH DEBUGGERT is displayed after encountering

an exception that was not trapped, you can get a listing of the queue by pressing (CTRL)-(Break) and
then executing a Q command. You can also direct the Debugger to trap exceptions, as described in
the Exception Trapping section of this chapter.

Displaying Data
Before showing how to use many of the more powerful Debugger features, let’s look at some
simple Display operations. Execute the following command:

*D 8+32
+40

1 All user programs are executed in the “‘user’” privilege state, while system programs, such as the Editor, Filer, and so forth, are executed in
“supervisor” privilege state. See the MC68000 User's Manual for a more comprehensive description of these states.

The Debugger

From this example, you can deduce that the literal numbers that you entered were interpreted as
decimal integers and that the result was a signed decimal integer.

Note that you don’t need to specify the D in commands that begin with non-alphabetic characters.

*B8+32
+40

Now execute this command:

*D -32768-32768
-68536

From this result, you can see that the range of integers is at least 16 bits. In fact, it is 32 bits, which
indicates that a four-byte register could be used to store the numbers and results. The range is — 231
through 23! — 1 (or 2 147 483 648 through 2 147 483 647).

Executing these commands might help to see this range of integers more clearly:

*D 127%256%#256%256
+2130706432
*D 128%25B%256%256

OVERFLOMW

Note that only integer arithmetic operations are performed. For instance, division produces only the
dividend, not the remainder:

*4/3
+1

Display Formats
Since the Debugger uses the processor’s 32-bit registers for expression evaluation, most results are

formatted using four-byte quantities. Here are two equivalent examples of using the default format
of one signed (four-byte) INTEGER:

*D 235
5

J B
o

I
4]
on

+
»D 255111
+

The format specifier is the ’:114" appended to the literal number 255: the leading 1 indicates that
one quantity is to be generated; the I indicates that the quantity is to be displayed as a signed,
decimal Integer; the trailing 4 indicates that 4 bytes are to be formatted.

If the default format of one four-byte decimal integer is not what you’d like, you can explicitly
specify another format. For example, the following command generates four one-byte Binary
numbers (the !’s indicate binary notation):

*D 1024+255:4B1
LOQOO00Q00 100000000 100000100 11111111

341

342 The Debugger

Here is an example of formatting the integer into four one-byte octal numbers (the %’s indicate
Octal notation):

D 1024+255:401
A0 N0 nd 1377
Now specify that the number is to be formatted as one four-byte hexadecimal number with either of

the equivalent commands (the $’s indicate hex notation):

*D 1024+255:1H4

$000004FF
D 1024+255:H
$000004FF

The leading 1 and trailing 4 are the defaults assumed when these parameters are omitted.

This format specification directs the Debugger to display two bytes as a hex value:
*D 1024+235:H2
$O000

Note that 0’'s were displayed because the Debugger begins with the most-significant bits of the
four-byte integer. Here is a more meaningful display format for the same data:

*D 1024+4255:2H2
$0000 $04FF

It is also possible to display literal strings with the data you are formatting for the display. Either
single or double quotes can be used to delimit the string. For example, this command gives a more
descriptive display:

*D -7:7-7 in Hexadecimal = ‘,H4

-7 in Hexadecimal = $FFFFFFF8

You can also disassemble machine-language instructions by using the X format specifier. Here is an
example:

*D $4E730000: X
RTS

This is usually only helpful while debugging Assembler-language programs. (Note that you must
load module REVASM into memory with the P-load command from the Main Command Level in
order to use this format.)

Another format specifier is the slash (/). When a ““/” is encountered in a Display command, the
display is continued on the next line.

*D 23+45:/ 5 'RESULT = ' ,14/

RESULT = +68

The Debugger

Input Formats -

The !, %, and $ symbols preceding numbers in the above examples were used to indicate the base
of the numbers displayed on the screen. Similarly, you can use them with literal numbers input in
the command. This feature allows number-base conversions.

For example, suppose that you want to convert the binary number 11001010 to its decimal
representation. Here is a sample command:

D 11100101031
+202
To convert the number to hex, execute this command:
D 100110110:H
$00000036

Changing the Default Display Format

The default format can be changed by giving an F (Format) command. For example, the following
command changes the default to ":1H4’, which instructs the Debugger to take 4 bytes and display
them as one four-byte Hexadecimal value:

FH

This command sets the default format to Octal (:104’):
FO

This command sets the default format to Binary (:1B4’):
FB

This command changes the default format to :1U4’, which directs the Debugger to display 1
four-byte Unsigned decimal integer.

Fu

This command sets the default format back to signed decimal Integer (114):
FI

Now that you’ve had an introduction to the Display commands, let’s look at some more powerful
commands.

Controlling Execution with Breakpoints

A breakpoint is a point in the program where you want execution to be temporarily halted. With a
Pascal program, the point will be at a program line. Thus, when the Debugger is executing a
program and encounters a breakpoint, it halts just before executing the program line.

343

344 The Debugger

Setting Breakpoints

To set a breakpoint, use the BS command. Specify the location as an integer which follows the
letters “BS”’, separated by a space. For example, to set a breakpoint at Pascal program line 74,
enter the following command:

BS 74

Press CONT (CONTINUE) and the program begins executing again. When it encounters line 74, it
pauses before executing the line and displays the message:

NOW AT LINE 74

The Debugger then prompts you for another command. At this point, you can do any of the
following:

e Step through the program one line at a time (if it was compiled with $DEBUG ONS$)
® Execute other Debugger commands (such as examine memory or register contents)
e Continue the program

Once the program has finished execution, all breakpoints are automatically de-activated. You will
have to explicitly re-activate them, as described in a subsequent section.

Up to nine such breakpoints may be defined at one time. Most breakpoints remain in effect until
cleared or de-activated.

The Count Option

An optional count can be included by adding an integer after the location. The count instructs the
Debugger to stop when it reaches the location the indicated number of times. For example, enter
the following command:

BS 31 3

This particular command instructs the Debugger to halt the program immediately before the third
execution of line 31. Press CONT, and the program executes until line 31 is reached the third time
and then halts. Note that this type of breakpoint is automatically cleared when encountered the
specified number of times.

Breakpoints with Commands

Another form of the BS command is the “BS’” and the location number followed by a Debugger
command string enclosed in quotes. The command string is one or more legal Debugger com-
mands (separated by semi-colons). These commands are immediately executed when the location
is encountered. The Debugger automatically continues program execution after executing the
command string. Here is an example that will provide a visual record of how many times that line
37 was executed:

BS 37 "D ‘LINE 37 REACHED.""

Of course, you will need to get back into the Debugger command screen to see the results of this
breaknoint being encountered. The D (Display) command is explained in detail later.

The Debugger

You can alternately pause the program by making the last command in the string a question mark.
This command directs the Debugger to pause and wait for input from the keyboard. For example,
enter the following command breakpoint:

BS 59 "D PCji ?"
The Debugger stops at line 59, displays the Program Counter, and waits for input.

Here is another example of using a breakpoint with a command:

BS 59 ‘IF 1=13 D "1=1"35 ELSES D "1<x1"357§ END’

The relational expression following the IF command, in this case 1=1, is first evaluated. If it is true,
then the command(s) between the IF and the ELSE are executed. If it is false, then the command(s)
betweéen the ELSE and END are executed. This type of command is useful for purposes like
checking the value of a variable and then pausing if its value is out of an expected range. The IF,
ELSE, and END commands are further explained in the reference section. Checking the value of
variables is explained later in this tutorial.

Deactivating Breakpoints
The BD command deactivates breakpoints. If a line number is included, the breakpoint is deacti-

vated for that line number. For instance, the following command deactivates the breakpoint at line
41:

BD 41
If no line number is included, all breakpoints are disabled. For example, this command disables all
breakpoints:

BD
Displaying the Breakpoint Table

The B command displays the breakpoint table or the one at the specified line number. Execute the
following command:

B

and you'll see a display similar to the following:

B
BREAK PODINTS

A 74 0
A 37 D 'LINE 37 REACHED'’
A 59 D ‘IF 1=13D "1=1"3SELSEID "1<>1"373END

The first character on each line of the table is either “A” for active, or “D” for deactivated. The
second parameter is the line number of the breakpoint. If the third entry in the table is a positive
number, then a count option is in effect for the breakpoint (execution will pause when the Debug-
ger reaches the line that number of times). If the third entry is a command string, then that
command is executed each time the line is encountered. If itis a “‘0”, then it is a normal breakpoint
(i.e., no count nor command was specified with the breakpoint).

345

346 The Debugger

Reactivating Breakpoints

The BA command reactivates disabled breakpoints. If the line number is included, the breakpoint is
reactivated for that line number, otherwise, all breakpoints are affected. For example, the following
command reactivates the breakpoint that was deactivated in the example above:

BA 41
Try the B command to see the table again.

When a program runs to completion and is then restarted (by pressing the (D) key), the
breakpoints are still there; they are just deactivated. Use the BA command to reactivate some or all
breakpoints.

Clearing Breakpoints

The BC command clears breakpoints by removing them from the table. If a line number is
included, the breakpoint is removed only for that line; otherwise, all breakpoints are cleared. Enter
the following command to remove only the breakpoint at line 41:

BC 41

The Pause Function and Breakpoints

If the Debugger is not installed, the ((PAUSE)) key is a no-op. The rest of this discussion
assumes that the Debugger is installed.

While not in the Debugger command mode, pressing effectively halts any program at the
current execution point. (Note that this key may not pause the program on a line boundary like the
STEP key does.)

While in the Debugger command mode, however, pressing returns you to the user program
display and pauses the program at the current execution point. Press continue to finish program
execution.

If you press after encountering an active breakpoint, it will also get you to the program’s
display. However, if you pause exactly on a currently active breakpoint (but before encountering

it), pressing will not get you into the program’s display. You would have to press
again cause the breakpoint to take immediate effect. CONT will then work as expected.

Executing a Number of Statements

Go commands set a tenth temporary breakpoint. They are one-time commands to pause execution
before a specified program instruction.

The G command tells the Debugger to Go. If you include a number after the “G”, that number of
statements is executed, after which the Debugger halts and waits for another command. For
example, this command tells the Debugger to Go 8 statements:

G 8

If no number is given, the remaining instructions are executed (same as pressing CONT).

The Debugger

The GF (Go and Flash) command is the same as the G command except execution is slowed and
line numbers are flashed in the lower right corner of the screen.

The GT (Go 'Til) command is the same as Go except a location is specified rather than a count. For
example, this command tells the Debugger to Go "Til line 39 is reached:

GT 38

Another form of this command tells the Debugger to Go ’Til the location is reached a number of
times. For example, the following command tells the Debugger to stop before line 41 is executed
the third time.

GT 41 3

The GT statement also allows the command string option. For example, this command directs the
Debugger to do the following: execute the program until line 42 is reached, then display the
Program Counter and await further instructions.

GT 42 "D PCs 7"

The GTF (Go 'Til and Flash) command is the same as GT except execution is slowed and line
numbers are flashed in the lower right corner of the CRT.

Tracing Program Flow through Procedures

You can also halt execution of a program as it enters and exits procedures. For instance, suppose
that you want to halt the program when the current procedure is exited. To do that, execute the PX
(Procedure eXit) command:

PX
Execution will be halted after the procedure is exited (i.e., after the last line of this procedure is

executed, but before the subsequent program line is executed). For instance, executing this com-
mand while in Level 3 results in this display:

BN =3
S A

PROC EXITED
The Debugger shows that the next line to be executed is line 31.

To halt the program at the point that the current procedure (or main program) calls another
procedure, use the PN (Procedure Next) command:

PN

When the next procedure is encountered, the Debugger reports this message:

NEXT PROC

and the program is halted before executing the first executable line of the procedure. If the current
procedure is exited before another is called, the Debugger reports this message:

PROC EXITED

347

348 The Debugger

A Look at the Stack Frame

Another handy feature to use while walking though the program on a procedure basis is the SF
(Stack Frame) command. Here is an example display of this command:

+SF
59 LEVEL.1

PROC ADDRESS -403316°

CALLED FROM ~402718"

LINE 74

The first line of the display shows the first (executable) line of the program next to the procedure’s
name. The second line shows the memory address of the procedure (which is not important while
debugging Pascal programs). The third line shows the address of the procedure. The fourth line
shows the number of the line from which this procedure was called.

Examining Variables

Without the ability to check the value of program variables, debugging a program could become
more tedious than it already is. Rest assured that this Debugger does allow you to look at the
contents of any variable in computer memory. However, in order to check the contents of program
variables, you will need to know two important facts: where they are in memory, and how to format
them into an understandable form.

To see where a variable is stored in memory, it is necessary to look at the Compiler listing. Each
variable has a negative integer printed next to it on the listing. This negative value is the offset (in
bytes) from the base address where the variables are located. The base address for a procedure’s
local variables is the current stack frame pointer (SF); the main program’s variables have a base
address offset the value of the program name (here XYZ) from A5.

That’s why it’s helpful if, when writing the program, you declare each variable on a separate line so
that an offset will be printed on the listing for each variable. Alternatively, you can use the
$TABLES$ Compiler option to get a printout which tells all about each data type and variable. This
option is explained further under *‘Structured Variable Formats™.

To format the variable’s value in memory, you will need to use the Display command. Let’s go back
to the example program and let it finish by clearing the breakpoints using “BC”’ and then press
CONT. Restart the program and then execute GT 60 command to Go Til line number 60.

To see the value of the local variable i that is declared in the procedure called Level 1, look at the
Compiler listing (line 14) to see that it has an offset of —4. This is an offset from the stack frame
pointer (SF) of that procedure. Subtract 4 from the stack frame pointer, and use ‘"’ after the
expression to indicate you want the contents of the memory location referenced by the value of the
expression in parentheses. Enter the following command:

DO(8F-dy X o= 1

X =0

To see the value of y, execute:

*D (SF-B)":/ ¥ = /41

Vo= 0

The Debugger

And to see the value of z, execute:
»D (8F-12)°:/ Z = ‘41

2 =0

You may also specify that all three integer variables be displayed at the same time by executing this
command:

*D (8F-12)7":3
O 0 0

The display will show the three integer variables separated with spaces. The variable with the offset
of —12 will be the first one displayed, the one with the offset of —8 is second, then the third one
has offset —4.

When looking for local variable values, be sure that you have stopped the program in the proce-
dure that defines the variables. Each procedure that is called has a stack frame created for it even if
there are no local variables. If you have stopped the program in a procedure which is contained
inside of another procedure, you can use the walk commands to get to the stack frames of the outer
level procedures (see ‘‘Static and Dynamic Links”).

The global variables in the main program or globals declared in modules are located at offsets from
their specific global area. The respective areas have a symbol associated with each one. The symbol
has a value which is equal to the offset or distance from (A5). So when you reference these
variables, add the program or module name to A5 and then subtract the offset for the particular
variable location.

For example, if you wanted to see the value of the variable x in the main program (here it is named
XYZ), use this command:

D (AS+XYZ-4)"

To see the value of Y, execute:
D (AS+XYZ-8)"
To see the value of the two character variables in ch1 and ch2 (of program DEBUG), it is necessary

to specify a format, because the default format is integer. To see the variables chl and ch2, execute
this command:

D (AS+XYZ-26) " :2A1

The format specifies that 2 Alpha values are to be displayed, each having 1 byte. They are located
at an offset of -26 from the value of symbol XYZ, relative to A5.

The processor registers that can have their values displayed are listed below:

AL A7 (the Address redisters)
AA (All Address redisters)
DO..D7 (the Data redisters)
DD (all Data redisters)
PC (the Progdram Counter)

SR (the Status redister)

349

350 The Debugger

To display the numeric values of the contents of address register AO and the Program Counter,
execute this command:

D AD PC

To display the numeric value at the location referenced by the the Program Counter (i.e., whose
address is stored in the PC), execute the following command:

D PC"

To display the value at the location referenced by the Program Counter, interpreting it as an
Assembler language instruction, execute this command (remember that module REVASM must be
P-loaded to use this format):

D PC":X

The Debugger symbols and corresponding definitions are as follows:

LN (Line Number)

EC (Escare Code)

I0 (I/0 result code)

GB (the Global variable Base)

RB (the code Relocation Base)

SF (the current Stack Frame pPointer)

Examining Consecutive Memory Locations

The Open command is like the Display command except the address is displayed with the value
and you are prompted to press either the up-arrow key or the down-arrow key. This causes the
address value to increment or decrement depending on the key choice. The adjustment is 1 byte
with the OB command, 2 bytes with the OW command and 4 bytes with the OL. command. When
you have seen enough, press (Retun), (ENTER), or (Select) ((_EXECUTE)) to terminate Open mode and
return to the Debugger command mode. For example, to see the hex values which are the machine
codes for the current program, use this command:

FH
(See the Default Formats section for more details.)

To examine (16-bit) word pointed to by the current contents of the Program Counter, use this
command:

OW PC"
The > to the right of the display prompts for an up-arrow key (1)) or down-arrow key

(1)). To see the next word in memory, press the up-arrow key. Continue until you have seen
enough. Press (Return) or (ENTER) to exit the Open command.

The Debugger

Formats for Structured Variables

There is a mechanism for displaying non sequential values also. It is necessary to specify one
memory location to set the memory pointer. Then by using special symbols, you can alter the value
in the memory pointer. You can also display the value of the memory pointer. All these symbols are
part of the format and are typed following the location specification and a colon (:).

"¥" ji5 the value of the memory pPointer

"sv preceded by a numbers decrements the value of the memory
pointer by the number

wut preceded by a numbers increments the value of the memorvy
pointer by the number

new o canses the memory pointer to taKe the value at the
location indicated by the current Pointer

These mechanisms make it possible to examine different fields of structured variables.

First, a note about structured variables. When space is allocated for a structured variable, the
number of bytes needed is determined and given to the variable. The individual elements of the
structure are then assigned space at ascending locations. For example, if you had the following
Pascal record, 14 bytes are needed to store the whole record:

Pasc.Rec = RECORD
Xx : INTEGERS}
vy 1 INTEGERS}
chl : CHAR?3
ch2 : CHAR?
pointer : “Pasc_Rec?
END 3§

If a variable of this type is the first variable for a procedure, then the record would occupy the first
14 bytes below the stack frame pointer (SF-14)". The elements in the record would be at positive
offsets from this location. Variable x would have an offset of 0 (SF-14)"; y has an offset of 4
(SF-14+4)"; Chl has an offset of 8 (SF-14 + 8)"; etc. This information is easily obtainable when
the $TABLES$ Compiler directive is used.

The following drawing illustrates the structure of the RECORD variable in memory.

SF—
POINTER

CH2
CH1

Y

—14—

351

352 The Debugger

Rather than displaying the values of the record individually, you can use the following Debugger
command:

D (SF-14) " 214852817 +dx 14 y%

This command tells the Debugger to go to the memory location 14 bytes below the Stack Frame
pointer (the bottom of the record), display the four-byte integer (x), go up 4 bytes and display the 2
Alpha characters, assume the value that is stored after the characters (the pointer field), then go up
4 bytes in the new record and display the four-byte integer (y), and then display the current
location. Notice that the Debugger display pointer is left at the subsequent locations after the
particular displays are made. In other words, after the display of (x), it is only necessary to move 4
bytes rather than 8, to position the display pointer to the character variables.

Changing Memory Contents

The ability to change the values in memory is, among other things, the ability to get a program back
on the right track. In one Debugger session, you can detect several problems with a program
without having to stop, edit and recompile the program for each one. Simply change the values of
the variables that are causing the problem. To change the values of variables in a Pascal program,
use the Open commands. Variables are referenced the same way they are with the Display
command.

The Open commands are as follows:

® OB - for byte values.
® OW - for word values.
e OL - for long word (four-byte) values.

Suppose you want to change the value of a variable to 8; assume that it is local to the current
procedure, that it is an integer variable, and that it has an offset of —4 from the procedure’s stack
frame pointer (SF). It is necessary to use the OL form of the Open command, since integers are 4
bytes long. Execute the following command:

OL (SF-4)" B

As another example, suppose you want to change the value of the global (main program’s) variable
chl to “x”. Because characters only use 1 byte of storage, use the OB form of the command.

0B (GB-25)" "x"

By changing the values of those variables, the sequence of execution is drastically altered.

The Debugger

Static and Dynamic Links

Each time a procedure is called in a Pascal program, a new stack frame is created. This stack frame
contains all the local variables in the procedure as well as the procedure’s static and dynamic links®.

The Debugger contains a mechanism for following these links. It is the Walk command. The Walk
command takes three forms:

o WS - follows the static link back one step.
o WD - follows the dynamic link back one step.
® WR - resets to the current stack frame.

There are no options or parameters. These commands in no way affect or influence program
execution.

Restart the Debugger by pressing the key and the (_D) key. Set a breakpoint on line 30 for
the third execution of the procedure Level 3.

BS 30 3
Press or (ENTER), and then press CONT. The program will stop the third time line 30 is reached.

The sequence of calls is as follows:
Prodram XYZ
Procedure Level_1
Procedure Level_Z2b
Procedure Level_.Za
Procedure Level.3
Procedure Level_ 3

Procedure Level.3

Give six successive WD (Walk Dynamic) commands and you’ll get the above information pre-
sented in reverse order. The information displayed for each WD command is the stack frame
information for the current procedure and then the same for the calling procedure. The stack frame
pointer is updated to point to the calling procedure’s stack frame. You can look at those variables
and the links stored in that stack frame. Consecutive WD commands walk us back through the
entire calling sequence. We can stop anywhere along this path and examine the variables in a
procedure’s stack frame.

1 Static and dynamic links are described in detail in the section of the Compiler chapter called How Pascal Programs Use the Stack.

353

354 The Debugger

To return to the stack frame for Level_3 where you stopped the program, execute:
Wi
This command resets the Debugger stack frame pointer variable.

You can also walk the static link. This gives you the ability to examine variables whose scope
includes the current procedure. Type:

WS
This command brings us to the Stack Frame for Level 2a which contains the variable x.

Use the Display command to examine the value of x.

D (B8F-4)~
The value of x is displayed.

The value of x is only affected by successive executions of Level_3. If Level 3 had local variables,
they would display different values in each stack frame. However, only one copy of the variable x
exists in the one stack frame for procedure Level_2a. The value of x is as it was when we stopped
program execution during the third invocation of Level 3. That value is 3.

Exception Trapping

It is possible to stop execution of a program at an exception to normal processing. Normally, an
escape is made by the system and successive recovery mechanisms allow termination of the
program. At the time of termination, the system displays the escape code and the line number in the
outer level recovery. The escape code is valid information, but the line number may not be the
location of the error. By re-executing the program with a trap set for the exception, we can stop
execution at the point of the error, have the actual line number of the error displayed, and examine
variables for the problem.

There are three commands for exception trapping. We can trap selected escape codes with the

Escape Trap instruction. The following command directs the Debugger to trap only escape code
100.

ET 100

When escape code 100 is encountered, control is returned to the Debugger and the following
message is displayed on the screen:

-EXCEPTION-
ESCAPE CODE 100
SR=%0000 PC= -207532 LINE +12

We can stop at all except selected escape codes with the Escape Trap Not instruction. This
command directs the Debugger to trap every escape code except 100.

ETN 100

The Debugger

Not specifying an escape code causes the command to work for every escape code. This command
directs the Debugger to trap all escape codes.

ET

This command doesn’t trap any exceptions.

ETN

When the exception occurs, execution stops and control is transferred to the Debugger. At that
point, you can examine the state of the program.

When the Debugger is initiated, the default escape trapping command is the following:

ETN O -Z20

These are the escape codes for normal termination and the key. The Debugger will trap all
escape codes except those.

The third type of escape trap command allows you to execute command(s) when the escape is
detected. Here is an example:

ETC ‘D "ESCAPE HAS OCCURRED"3i?’

This command displays its message and then halts the program, awaiting further Debugger com-
mands.

Generating Escapes
With the Debugger, you can also generate escapes. For instance, this command generates an
ESCAPE(10) at the current point in the program.

*EC 10

The result of this command is the same as if the program had encountered the escape at the current
location. If you have an ET command currently defined for the escape code, the Debugger will trap
it also.

A Note about Assembly Language Programs

All of the Debugger commands apply when debugging an Assembler language program as well.
The difference is that the location specification is given as an address and not a line number. An
address is specified with a *“~”’ appended to the location specifier. For example, the following
command says to Go Til the address 1423 is encountered:

GT 1423~

355

356 The Debugger

The Debugger knows about symbols which have been DEFed. The entry points into assembly
modules, programs, and procedures should have been defined (with DEF). You can specify an
address in an assembly routine by specifying an offset from the routine’s entry point. The offset in
the routine can be found on the Assembler output. For example, the following (equivalent) com-
mands direct the Debugger to Go Til encountering the the address 16 decimal (10 hex) memory
locations past the entry point into “‘routine’:

GT (routine+iB)"

or.

GT (routine+%10)"

Read about the particulars of each command in the subsequent Command Reference section.

The Debugger

Debugger Keyboard

This section describes the key definitions while in the Debugger. Note that once you are in the
Debugger there are two modes: Command Mode and Step Mode.

A Note about Key Notations

Throughout this section, you will be shown which keys invoke certain Debugger functions. Since
you may have one of three different keyboards connected to your computer, each with a different
set of keys, you will need to learn which key to press on your keyboard. Here are examples of keys
used to invoke a few functions on the three different keyboards.

Desired HP 46020A HP 98203B HP 98203A
Function Key(s) Key(s) Key(s)
Pause
Single Step ((System))

Slow Step (System)) CetrL)-(Cr5) | (emRL)-(step) -(step)
Continue ((System))

For instance, invoke the Pause function on a 46020 keyboard by pressing the key. On a
98203B keyboard, press the key. With a 98203A keyboard, press the key.

As another example, suppose that you want to invoke the Single-Step function. On both 98203A
and B keyboards, press the key; the label is on the key itself. On a 46020 keyboard it will be
the System key labeled on the key, which is labeled STEP on the screen while in the
System-key mode. (If you are not already in System-key mode, then you will need to press the
key before pressing (_f5_)). The same notation is used for the other System keys on the
46020 keyboard (i.e., through (_f8_)): the actual System key is not given in text; the label is
given instead. You will need to make the association, which you can easily do by looking at the
System-key labels while the Menu is being displayed (press the key to toggle the Menu on
and off). If you are not familiar with the (System) and (Menu) keys, read the discussion in the Pascal
3.0 User’s Guide.

The convention used in this manual is to show the 46020 keys first (followed by the equivalent
98203B key in parentheses). For instance, the ((PAUSE)) key invokes the Pause function: on

the 46020, it is the key; on a 98203B keyboard, it is the(PAUSE) key. (The 98203A key
is not shown, because it is close enough to the label that you should be able to easily make
the connection.)

Is the Debugger Installed?

Before proceeding, you should verify that the Debugger is currently installed. Press ((PAuSE))
to pause the system. If a r is displayed in the lower, right-hand corner of the screen, then the
Debugger is installed. Press CONT ((CONTINUE)) to resume operation.

If the Debugger is not installed, then pressing will do nothing.

1 This discussion only gives a few examples; the Debugger Keyboard section near the end of the chapter describes all key(s).

357

358 The Debugger

Calling the Debugger from the Main Command Level

(o) From the Main Command Level, pressing the (_D_) key calls the Debugger
(if installed).

Step Modes

Here are the available operations and key definitions while in the Debugger Single-Step and

Slow-Step Mode.

Getting into the Step Modes
STEP Causes the program to halt on the next line number; or, if already halted,
execute one Pascal statement. (This key gets you into the Single-Step Mode.)

(_CTRL) -STEP Causes program execution to be slowed (to about 2 statements per second)
and line numbers displayed. (This key gets you into the Slow-Step Mode.)

Controlling Program Execution

(_Break) Program execution is paused. Note that the type-ahead buffer is still active
((PAUSE)) and immediate-execute keys still function (e.g,. DMP A).
(Stop) Stops program execution.

Getting into Command Mode
(CctRL)-(Break) This key provides immediate entry into Debugger Command Mode.

(CethL)-(ause))

Returning to the Main Command Level
CONT Causes program exection to resume with Step mode cancelled.

((CONTINUE)

Command Mode

Here is a description of available operations and key definitions while in the Debugger Command
Mode. If it is not installed, the command is identical to the eXecute command.

Entering Commands
Alphanumeric Keys Used to enter Debugger commands. The characters generated are upper-
case; you must use to produce lowercase characters.

(Retumn) or (ENTER) Terminates input and initiates execution of the command.

(Select) Terminates input and initiates execution of the command.

((EXECUTE)

-ALPHA

with

numeric-pad keys

CTRL) with

alphanumeric and
numeric-pad keys

Clear line) or
Delete line

CLRLN Jor
DEL LN))

RECALL

l'

Delete char
((DEL CHR))

(ko) thru(ke)
Knob

(Cshitt)-Knob

Left-arrow and
Right-arrow

Up-arrow and
Down-arrow

The Debugger

Alternates between the Debugger command screen and System screen

((ctRL)-(EXEC) on the 98203A keyboard).
Undefined (keyboard is always in CAPS mode).

Produces special characters (only 46020 keyboards).

Allows entry of ASCII control characters.

Back space the cursor and blanks one character (If the cursor is in the
extreme left, this key is a no-op).

Clears the input line.

Clears the input line and recalls the last executed line.

Inserts one (1) blank character at the cursor position (does not switch to an
“insert mode,”’ as there is none).

Deletes the character at the cursor position.

Deletes all characters to the right of the cursor.

Typing-aid keys (explained under K commands).

Same as left/right arrow keys.
Same as up/down arrow keys.

Move the cursor in the corresponding direction.

Have meaning only with the Open commands (OL, OW, OB).

359

360 The Debugger

Screen Control

((CLR SCR))

ALPHA

DMP A

((DUMP_ALPHA))
(_CTRL) -ALPHA

GRAPH
(CGRaPHs))
DMP G
(UHPGRAPHES)

Clears the alpha raster. In Step Modes, this key clears the System screen; in
Command mode, it clears the Debugger Command screen.

Turns on the alpha raster and turns off the graphics raster ((SHIFT)-(_RCL) on
the 98203A keyboard).

Performs a DUMP ALPHA function (the current alpha raster is sent to the
PRINTER: volume). ((SHIFT)-(INS C) on the 98203A keyboard).

Alternates between the Debugger and System screen images ((_CTRL)-(EXEC)
on the 98203A keyboard).

Turns on the graphics raster and turns off the alpha raster. ((SHIFT)-(INS L) on
the 98203A keyboard.)

Performs a DUMP GRAPHICS function (sends the current graphics raster to
the PRINTER: volume). ((SHIFT)-(DEL C) on the 98203A keyboard.)

Controlling Program Execution

((PAUSE))

Program execution is pauseed. Note that the type-ahead buffer is still active
and immediate-execute keys still function (e.g,. DMP A).

Stops program execution.

Getting into a Step Mode

STEP

(LCTRL) -STEP

Causes the program to continue executing until the next line number is
encountered (i.e., gets you into Single-Step Mode).

Causes the program to continue executing slowly, and line numbers display-
ed as encountered (i.e., gets you into Slow-Step Mode).

Returning to the Main Command Level

CONT
((CONTINUE)

Causes program exection to resume with Command mode cancelled.

The Debugger

Debugger Command Summary

This section briefly summarizes the Debugger commands for quick reference purposes. A more
complete description of each command is presented in the following Command Reference section.

Breakpoint Commands

BS — Sets a breakpoint at the specified location.
BD — Disables (but does not remove) breakpoint(s).
BA — Activates disabled breakpoint(s).

BC — Clears breakpoint(s).

B — Displays the breakpoint table.

Call Command
CALL -- Calls the machine language routine at the specified memory address.

Display Commands

D - Displays the specified object(s). Objects can be specified immediately, directly, or indirectly.
Formats describe the internal representation of the data.

TD - Displays the command string which is defined by the softkey k4.

TD I — Restores the initial command string to k4.

Dump Commands

DA — Performs the DUMP ALPHA function.
DG — Performs the DUMP GRAPHICS function.

Escape Code Commands

EC — Generates the specified escape.
ET - Sets up escape trapping of specified escape codes; Debugger halts when an escape is
executed.
ETC — Sets up escape trapping of all codes; Debugger executes the specified command when
an escape is executed.
ETN — Sets up escape trapping of all codes except those specified; Debugger executes the
specified command when an escape is executed.

Format Commands

FB — Sets the default display format to Binary.

FH — Sets the default display format to Hexadecimal.

FI — Sets the default display format to signed Integer.
FO — Sets the default display format to Octal.

FU — Sets the default display format to Unsigned integer.

Go Commands

G — Causes execution to resume (same as CONTINUE).

GT — Causes execution to resume until specified location is encountered.

GTF or GFT — Same as GT except that execution is slowed and the line numbers are flashed in
the lower right-hand corner of the screen.

361

362 The Debugger

IF, ELSE, and END Commands

IF — Allows conditional execution of subsequent commands based on the result of evaluating
the specified expression.

ELSE — Delimits the commands that will be executed when the IF condition is FALSE.

END - Ends the IF command.

Open Memory Commands
OB, OL, and OW — Used to display (and optionally alter) the values of memory locations.

Procedure Commands

PN — Halts program execution when the next procedure is called (or when the current one is
exited, whichever occurs first).
PX, or P — Halts program execution when the current procedure is exited.

Queue Commands

Q — Displays the Queue, which is a record of which line numbers were executed (or PC values
of instructions executed).

QE — Ends recording of line number values in the Queue.

QS - Starts the recording of information in the Queue.

Register Operations
A0..A7, D0..D7, PC, SP, US, SR — Display or assign values to the corresponding processor

register(s).
Softkey Commands
k0 .. k9 — Defines the command string to be displayed when the softkey is pressed (while in the
Debugger).

System Boot Command

sb — The system boot command puts the computer in the power-up state for re-booting. (The
command must be typed in lowercase letters.)

Trace Commands

T — Causes the specified number of instructions to be executed, each followed by an implicit TD
command.
TQ — Same as the T command except that the TD command is executed only after the last
instruction.
TT — Same as TQ except that a location is specified rather than a count.

Walk Procedure Links Commands

WD — The Stack Frame pointer (SF) is moved to the stack frame of the calling procedure.
WS — The SF is moved to the stack frame of the nesting procedure.
WR — The SF is returned to the current stack frame.

The Debugger 363

Debugger Command Reference

This section contains a formal description of syntax and semantics for each Debugger command.

Debugger Expressions
With the Debugger, all expressions are integer expressions.

| binary] <
{ i | operator [i 1
P —II integer II - o)

register . .
symbol o]
Debugger -
symbol o
system
symbol o
hex
digits
octal
digits
binary
digits

expression

'I address -

f

binary
operator

expression

expressiaon

—

364 The Debugger

Item

Description/Default

Range Restrictions

binary operator
register symbol

Debugger symbol

system symbol

address

size

an operator that requires two operands
a symbol representing a processor register

a symbol known to the Debugger

any symbol in the system symbol table

an integer numeric expression followed by a
“~» which refers to the contents of the specified
memory address

integer expression that specifies the number of
bytes to be used

+ » Ty /7 *’
< <=, =, = > <>
A0..A7, D0..D7, PC, SP,
US, SR

LN (Line Number)
EC (Escape Code)

IO (I/O result code)
GB (the Global variable
Base)

RB (the code Relocation
Base)

SF (the current Stack
Frame pointer)

— 28T thru 23! - 1

1thru 4

The “U” (unsigned integer) and “I”” (signed integer) option paths indicate whether the value at the
specified address and with specified number of bytes (size) is to be treated as a signed or unsigned

integer.

Multiple Commands on a Line

Several commands may be entered on the same line. These commands are separated by a
semicolon ;).

single

Debugger command

The Debugger 365

Breakpoint Commands

Breakpoints are points in a program where execution may be halted. The Breakpoint commands
control program execution by setting up, activating, and clearing breakpoints in a program.

B

The “B” command causes the breakpoint table to be displayed.

(8)} - -
line
number

address

Item | Description/Default Range Restrictions
line number an expression that identifies a program line 0 thru 2161
address an expression, followed by a “”’, that identifies -23 thru 231 -1

a location in memory

The first column contains an “A” for an active breakpoint or a “‘D” for a deactivated breakpoint. If
no location is specified, the table displays all breakpoints.

BA

The “BA” command Activates disabled breakpoints. If a location is specified, then only that
breakpoint is re-activated; otherwise, all breakpoints are re-activated.

>

\
y

line
number

Item | Description/Default Range Restrictions
line number an expression that identifies a program line 0 thru 26-1
address an expression, followed by a “*”, that identifies -231 thru 231 -1

a location in memory

366 The Debugger

BC

The “BC” command Clears breakpoints. If a location is specified, then only that breakpoint is
cleared; otherwise, all breakpoints are cleared.

line
. number '

address

Item | Description/Default Range Restrictions
line number an expression that identifies a program line 0 thru 216-1
address an expression, followed by a “"”| that identifies — 23V thru 231 -1

a location in memory

BD

The “BD” command De-activates breakpoints. If a location is specified, then only that breakpoint is
de-activated; otherwise, all breakpoints are de-activated.

{ BD } >]
line
. number '

address

Item l Description/Default Range Restrictions
line number an expression that identifies a program line 0 thru 216-1
address an expression, followed by a “””, that identifies — 231 thru 231 -1

a location in memory

The Debugger

BS

Setting breakpoints with the “BS” command causes the program to stop or perform some opera-
tion at a given line number or instruction address.

Y

=
command
Item Description/Default Range Restrictions
line number an expression that identifies a program line 0 thru 2%6-1
address an expression, followed by a “””, that identifies — 231 thru 231 -1
a location in memory
count expression — 231 thru 231 -1
Debugger command command(s) to be executed when breakpoint any legal Debugger
reached command(s)

If only a location is specified, the breakpoint is set at that location and then activated. The program
will halt just before it subsequently reaches that point.

Specifying a count sets a breakpoint that will halt the program after the count has been de-
cremented to 0. (The count is decremented each time the location is reached.) When the program
is halted, this type of breakpoint is automatically cleared. (The other two types of breakpoints set
with the BS command are not cleared when encountered.)

Adding a command string to the breakpoint causes the command to be executed each time the
point is reached. A *?” in the command string causes the Debugger to wait for input from the
keyboard. Otherwise, the command is executed and program execution resumes.

367

368 The Debugger

The Call Command

This command is used to call the subroutine at the specified address.

CCAL[)—.I address H

Item Description/Default | Range Restrictions

address an expression, followed by a “””", that identifies —231 thru 23! —1
a location in memory

The effect of this command is as if a Jump to Subroutine (JSR) instruction was encountered just
before the current program counter (PC).

The CALL command can be abbreviated with the letters CA.

The Debugger 369

Display Command
D

The D command is like a print statement where the parameters are objects and formats.

X

(D}'(- T =
contiguous
expression data specifier

| string
constant
| softkey
symbol
[eamrens |

address
specifier

contiguous cata specifier:
> - - [
contiguous
data specifier
) contiguous
type al data specifier

X

S

string J
constant o
address specifier

count

0

address
specifier

contiguous
data specifier

contiguous
data specifier

370 The Debugger

Item

Description/Default

Range Restrictions

expression

string constant

softkey symbol

address

count

contiguous data specifier

address specifier

type

size

integer expression

literal value

a symbol (not the actual key)

an expression, followed by a “”"", that identifies
a location in memory

integer constant

specifier that identifies the format of data which
is contiguous in memory (i.e., memory pointer
symbols * etc. not used)

specifier that identifies an address in memory
{(memory pointer symbols such as * may be
used)

A = Alpha character

B = Binary

H = Hexadecimal

[= Integer (size = 1..4)

O = Octal (size = 1..4)

S = String type (size is declared size)

R = Real (size not allowed)

U = Unsigned integer

X = reverse assembly (size not allowed)

integer constant

Objects can be immediate, direct, or indirect.

— 23T thru 23t —1

any character delimited
with single or double
quotes

KO thru K9

— 2% thry 231 —1

1 thru 23! -1

see drawing
(nesting limit is 3)

see drawing
(nesting limit is 3)

- 23 thru 23t —1
(except where
noted above)

Formats describe the internal representation of the data. Non-consecutive data can be displayed
using the format options available when the address parameter is used.

If a format of type S includes a count parameter, then a size parameter must also be included.

If the output of a Display command fills the screen, a MORE prompt will be issued. A reply of (Return),

(LEnter), or (Select) ((_EXECUTE)) will continue the display. (_Shift)-(Select) ((SHIFT)-(EXECUTE)) will cancel
the display and the rest of the command string. All other responses will be ignored.

The Debugger 371

Dump Commands

These commands allow you to perform the DUMP ALPHA and DUMP GRAPHICS functions while
in the Debugger.

4

DA

The DA command performs the DUMP ALPHA function.

DG

The DG command performs the DUMP GRAPHICS function.

Note
These commands can only be used while executing programs in the

LY

processor’s ‘“‘user mode.”’ If attempted while in “‘supervisor mode,” the
following error will be reported:

NOT ALLOWED NOMW

372 The Debugger

Escape Code Commands

These commands allow you generate and trap escape codes while in the Debugger.

EC

The effect of executing this command is the same as if you had executed an ESCAPE(code) in the
program just before the current PC. If any ET, ETC, or ETN commands have been used to set up
escape code trapping, then the Debugger will be halted and the escape code displayed on the
screen.

escape
) A

Item | Description/Default l Range Restrictions

escape code signed integer expression; negative for system — 215 thru 215
escapes, positive for user escapes.

Here is an example display:

*EC 10

-EXCEPTION-

ESCAPE CODE +10

Sk=%0004 PC= -22B230 LINE +9

ET

The Escape Trap command allows you to specify that either all escape codes or specified escape
codes are to be trapped by the Debugger.

(ET } ‘F >] >
escape
code

Item I Description/Default | Range Restrictions

signed integer expression; negative for system — 25 thru 21%-1
escapes, positive for user es<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>